12,220 research outputs found

    A Deterministic and Generalized Framework for Unsupervised Learning with Restricted Boltzmann Machines

    Full text link
    Restricted Boltzmann machines (RBMs) are energy-based neural-networks which are commonly used as the building blocks for deep architectures neural architectures. In this work, we derive a deterministic framework for the training, evaluation, and use of RBMs based upon the Thouless-Anderson-Palmer (TAP) mean-field approximation of widely-connected systems with weak interactions coming from spin-glass theory. While the TAP approach has been extensively studied for fully-visible binary spin systems, our construction is generalized to latent-variable models, as well as to arbitrarily distributed real-valued spin systems with bounded support. In our numerical experiments, we demonstrate the effective deterministic training of our proposed models and are able to show interesting features of unsupervised learning which could not be directly observed with sampling. Additionally, we demonstrate how to utilize our TAP-based framework for leveraging trained RBMs as joint priors in denoising problems

    Conditional Restricted Boltzmann Machines for Structured Output Prediction

    Full text link
    Conditional Restricted Boltzmann Machines (CRBMs) are rich probabilistic models that have recently been applied to a wide range of problems, including collaborative filtering, classification, and modeling motion capture data. While much progress has been made in training non-conditional RBMs, these algorithms are not applicable to conditional models and there has been almost no work on training and generating predictions from conditional RBMs for structured output problems. We first argue that standard Contrastive Divergence-based learning may not be suitable for training CRBMs. We then identify two distinct types of structured output prediction problems and propose an improved learning algorithm for each. The first problem type is one where the output space has arbitrary structure but the set of likely output configurations is relatively small, such as in multi-label classification. The second problem is one where the output space is arbitrarily structured but where the output space variability is much greater, such as in image denoising or pixel labeling. We show that the new learning algorithms can work much better than Contrastive Divergence on both types of problems
    corecore