2 research outputs found

    Partially Block Markov Superposition Transmission of Gaussian Source with Nested Lattice Codes

    Full text link
    This paper studies the transmission of Gaussian sources through additive white Gaussian noise (AWGN) channels in bandwidth expansion regime, i.e., the channel bandwidth is greater than the source bandwidth. To mitigate the error propagation phenomenon of conventional digital transmission schemes, we propose in this paper a new capacity-approaching joint source channel coding (JSCC) scheme based on partially block Markov superposition transmission (BMST) of nested lattice codes. In the proposed scheme, first, the Gaussian source sequence is discretized by a lattice-based quantizer, resulting in a sequence of lattice points. Second, these lattice points are encoded by a short systematic group code. Third, the coded sequence is partitioned into blocks of equal length and then transmitted in the BMST manner. Main characteristics of the proposed JSCC scheme include: 1) Entropy coding is not used explicitly. 2) Only parity-check sequence is superimposed, hence, termed partially BMST (PBMST). This is different from the original BMST. To show the superior performance of the proposed scheme, we present extensive simulation results which show that the proposed scheme performs within 1.0 dB of the Shannon limits. Hence, the proposed scheme provides an attractive candidate for transmission of Gaussian sources.Comment: 22 pages, 9 figures, Submitted to IEEE Transaction on Communication

    Block Markov Superposition Transmission of RUN Codes

    Full text link
    In this paper, we propose a simple procedure to construct (decodable) good codes with any given alphabet (of moderate size) for any given (rational) code rate to achieve any given target error performance (of interest) over additive white Gaussian noise (AWGN) channels. We start with constructing codes over groups for any given code rates. This can be done in an extremely simple way if we ignore the error performance requirement for the time being. Actually, this can be satisfied by repetition (R) codes and uncoded (UN) transmission along with time-sharing technique. The resulting codes are simply referred to as RUN codes for convenience. The encoding/decoding algorithms for RUN codes are almost trivial. In addition, the performance can be easily analyzed. It is not difficult to imagine that a RUN code usually performs far away from the corresponding Shannon limit. Fortunately, the performance can be improved as required by spatially coupling the RUN codes via block Markov superposition transmission (BMST), resulting in the BMST-RUN codes. Simulation results show that the BMST-RUN codes perform well (within one dB away from Shannon limits) for a wide range of code rates and outperform the BMST with bit-interleaved coded modulation (BMST-BICM) scheme.Comment: submitted to IEEE Transactions on Communication
    corecore