37 research outputs found

    Développements algorithmiques pour l’amélioration des résultats de l’interférométrie RADAR en milieu urbain

    Full text link
    Le suivi des espaces urbanisés et de leurs dynamiques spatio-temporelles représente un enjeu important pour la population urbaine, autant sur le plan environnemental, économique et social. Avec le lancement des satellites portant des radars à synthèse d’ouverture de la nouvelle génération (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2,Sentinel-1, Constellation RADARSAT), il est possible d’obtenir des séries temporelles d’images avec des résolutions spatiales et temporelles fines. Ces données multitemporelles aident à mieux analyser et décrire les structures urbaines et leurs variations dans l’espace et dans le temps. L’interférométrie par satellite est effectuée en comparant les phases des images RSO prises à différents passages du satellite au-dessus du même territoire. En optant pour des positions du satellite séparées d’une longue ligne de base, l’InSAR mène à la création des modèles numériques d’altitude (MNA). Si cette ligne de base est courte et à la limite nulle, nous avons le cas de l’interférométrie différentielle (DInSAR) qui mène à l’estimation du mouvement possible du terrain entre les deux acquisitions. Pour toutes les deux applications de l’InSAR, deux opérations sont importantes qui garantissent la génération des interférogrammes de qualité. La première est le filtrage du bruit omniprésent dans les phases interférométriques et la deuxième est le déroulement des phases. Ces deux opérations deviennent particulièrement complexes en milieu urbain où au bruit des phases s’ajoutent des fréquents sauts et discontinuités des phases dus à la présence des bâtiments et d’autres structures surélevées. L’objectif de cette recherche est le développement des nouveaux algorithmes de filtrage et de déroulement de phase qui puissent mieux performer que les algorithmes considérés comme référence dans ce domaine. Le but est d’arriver à générer des produits InSAR de qualité en milieu urbain. Concernant le filtrage, nous avons établi un algorithme qui est une nouvelle formulation du filtre Gaussien anisotrope adaptatif. Quant à l’algorithme de déroulement de phase, il est fondé sur la minimisation de l’énergie par un algorithme génétique ayant recours à une modélisation contextuelle du champ de phase. Différents tests ont été effectués avec des images RSO simulées et réelles qui démontrent le potentiel de nos algorithmes qui dépasse à maints égards celui des algorithmes standard. Enfin, pour atteindre le but de notre recherche, nous avons intégré nos algorithmes dans l’environnement du logiciel SNAP et appliqué l’ensemble de la procédure pour générer un MNA avec des images RADARSAT-2 de haute résolution d’un secteur de la Ville de Montréal (Canada) ainsi que des cartes des mouvements du terrain dans la région de la Ville de Mexico (Mexique) avec des images de Sentinel-1 de résolution plutôt moyenne. La comparaison des résultats obtenus avec des données provenant des sources externes de qualité a aussi démontré le fort potentiel de nos algorithmes.The monitoring of urban areas and their spatiotemporal dynamics is an important issue for the urban population, at the environmental, economic, as well as social level. With the launch of satellites carrying next-generation synthetic aperture radars (TerraSAR-X, COSMO-SkyMed, ALOS, RADARSAT-2, Sentinel-1, Constellation RADARSAT), it is possible to obtain time series of images with fine temporal and spatial resolutions. These multitemporal data help to better analyze and describe urban structures, and their variations in space and time. Satellite interferometry is performed by comparing the phases of SAR images taken at different satellite passes over the same territory. By opt-ing for satellite positions separated by a long baseline, InSAR leads to the creation of digital elevation models (DEM). If this baseline is short and, at the limit zero, we have the case of differential interferometry (DInSAR) which leads to the estimation of the possible movement of the land between the two acquisitions. In both InSAR applica-tions, two operations are important that ensure the generation of quality interferograms. The first is the filtering of ubiquitous noise in the interferometric phases and the second is the unwrapping of the phases. These two operations become particularly complex in urban areas where the phase noise is added to the frequent jumps and discontinuities of phases due to the presence of buildings and other raised structures. The objective of this research is the development of new filtering and phase unwrap-ping algorithms that can perform better than algorithms considered as reference in this field. The goal is to generate quality InSAR products in urban areas. Regarding filtering, we have established an algorithm that is a new formulation of the adaptive anisotropic Gaussian filter. As for the phase unwrapping algorithm, it is based on the minimization of energy by a genetic algorithm using contextual modelling of the phase field. Various tests have been carried out with simulated and real SAR images that demonstrated the potential of our algorithms that in many respects exceeds that of standard algorithms. Finally, to achieve the goal of our research, we integrated our algorithms into the SNAP software environment and applied the entire procedure to generate a DEM with high-resolution RADARSAT-2 images from an area of the City of Montreal (Canada) as well as maps of land movement in the Mexico City region (Mexico) with relatively medium-resolution Sentinel-1 images. Comparison of the results with data from external quality sources also demonstrated the strong potential of our algorithms

    Visualization and Localization of Interventional Devices with MRI by Susceptibility Mapping

    Get PDF
    Recently, interventional procedures can be performed with the visual assistance of MRI. However, the devices used in these procedures, such as brachytherapy seeds, biopsy needles, markers, and stents, have a large magnetic susceptibility that leads to severe signal loss and distortion in the MRI images and degrades the accuracy of the localization. Right now, there is no effective way to correctly identify, localize and visualize these interventional devices in MRI images. In this dissertation, we proposed a method to improve the accuracy of localization and visualization by generating positive contrast of the interventional devices using a regularized L1 minimization algorithm. Specifically, the spin-echo sequence with a shifted 180-degree pulse is used to acquire high SNR data. A short shift time is used to avoid severe phase wrap. A phase unwrapping method based on Markov Random Field using Highest-Confidence-First algorithm is proposed to unwrap the phase image. Then the phase images with different shifted time are used to calculate the field map. Next, L1 regularized deconvolution is performed to calculate the susceptibility map. With much higher susceptibility of the interventional devices than the background tissue, the interventional devices show positive-contrast in the susceptibility image. Computer simulations were performed to study the effect of the signal-to-noise ratio, resolution, orientation and size of the interventional devices on the accuracy of the results. Experiments were performed using gelatin and tissue phantom with brachytherapy seeds, gelatin phantoms with platinum wires, and water phantom with titanium needles. The results show that the proposed method provide positive contrast images of these interventional devices, differentiate them from other structures in the MRI images, and improves the visualization and localization of the devices

    Optimal spectral reconstructions from deterministic and stochastic sampling geometries using compressive sensing and spectral statistical models

    Get PDF
    This dissertation focuses on the development of high-quality image reconstruction methods from a limited number of Fourier samples using optimized, stochastic and deterministic sampling geometries. Two methodologies are developed: an optimal image reconstruction framework based on Compressive Sensing (CS) techniques and a new, Spectral Statistical approach based on the use of isotropic models over a dyadic partitioning of the spectrum. The proposed methods are demonstrated in applications in reconstructing fMRI and remote sensing imagery. Typically, a reduction in MRI image acquisition time is achieved by sampling K-space at a rate below the Nyquist rate. Various methods using correlation between samples, sample averaging, and more recently, Compressive Sensing, are employed to mitigate the aliasing effects of under-sampled Fourier data. The proposed solution utilizes an additional layer of optimization to enhance the performance of a previously published CS reconstruction algorithm. Specifically, the new framework provides reconstructions of a desired image quality by jointly optimizing for the optimal K-space sampling geometry and CS model parameters. The effectiveness of each geometry is evaluated based on the required number of FFT samples that are available for image reconstructions of sufficient quality. A central result of this approach is that the fastest geometry, the spiral low-pass geometry has also provided the best (optimized) CS reconstructions. This geometry provided significantly better reconstructions than the stochastic sampling geometries recommended in the literature. An optimization framework for selecting appropriate CS model reconstruction parameters is also provided. Here, the term appropriate CS parameters\u27 is meant to infer that the estimated parameter ranges can provide some guarantee for a minimum level of image reconstruction performance. Utilizing the simplex search algorithm, the optimal TV-norm and Wavelet transform penalties are calculated for the CS reconstruction objective function. Collecting the functional evaluation values of the simplex search over a large data set allows for a range of objective function weighting parameters to be defined for the sampling geometries that were found to be effective. The results indicate that the CS parameter optimization framework is significant in that it can provide for large improvements over the standard use of non-optimized approaches. The dissertation also develops the use of a new Spectral Statistical approach for spectral reconstruction of remote sensing imagery. The motivation for pursuing this research includes potential applications that include, but are not limited to, the development of better image compression schemas based on a limited number of spectral coefficients. In addition, other applications include the use of spectral interpolation methods for remote sensing systems that directly sample the Fourier domain optically or electromagnetically, which may suffer from missing or degraded samples beyond and/or within the focal plane. For these applications, a new spectral statistical methodology is proposed that reconstructs spectral data from uniformly spaced samples over a dyadic partition of the spectrum. Unlike the CS approach that solves for the 2D FFT coefficients directly, the statistical approach uses separate models for the magnitude and phase, allowing for separate control of the reconstruction quality of each one. A scalable solution that partitions the spectral domain into blocks of varying size allows for the determination of the appropriate covariance models of the magnitude and phase spectra bounded by the blocks. The individual spectral models are then applied to solving for the optimal linear estimate, which is referred to in literature as Kriging. The use of spectral data transformations are also presented as a means for producing data that is better suited for statistical modeling and variogram estimation. A logarithmic transformation is applied to the magnitude spectra, as it has been shown to impart intrinsic stationarity over localized, bounded regions of the spectra. Phase spectra resulting from the 2D FFT can be best described as being uniformly distributed over the interval of -pi to pi. In this original state, the spectral samples fail to produce appropriate spectral statistical models that exhibit inter-sample covariance. For phase spectra modeling, an unwrapping step is required to ensure that individual blocks can be effectively modeled using appropriate variogram models. The transformed magnitude and unwrapped phase spectra result in unique statistical models that are optimal over individual frequency blocks, which produce accurate spectral reconstructions that account for localized variability in the spectral domain. The Kriging spectral estimates are shown to produce higher quality magnitude and phase spectra reconstructions than the cubic spline, nearest neighbor, and bilinear interpolators that are widely used. Even when model assumptions, such as isotropy, violate the spectral data being modeled, excellent reconstructions are still obtained. Finally, both of the spectral estimation methods developed in this dissertation are compared against one another, revealing how each one of the methods developed here is appropriate for different classes of images. For satellite images that contain a large amount of detail, the new spectral statistical approach, reconstructing the spectrum much faster, from a fraction of the original high frequency content, provided significantly better reconstructions than the best reconstructions from the optimized CS geometries. This result is supported not only by comparing image quality metrics, but also by visual assessment.\u2

    Mapping a Brazilian deforestation frontier using multi-temporal TerraSAR-X data and supervised machine learning

    Get PDF
    Satellite remote sensing enables a repeated survey of the earth’s surface. With machine learning it is possible to recognize complex patterns from extensive data sets. Using methods from machine learning, remote sensing images are utilized to derive large scale land use and land cover (LULC) maps, carrying discrete information on the human management of land and intact primary forests, as well as change processes. Such information is particularly relevant in little developed regions, and areas which are undergoing transformation. Therefore, satellite remote sensing is generally the preferred method for generating LULC products within tropical regions, and particularly useful to assist tracking of change processes with regard to deforestation or land management. The Amazon is the largest area of continuous tropical forest in the world, and of substantial importance with regard to biodiversity, its influence on global climate, as well as providing living space for a large number of indigenous tribes. As tropical region, the Amazon is particularly affected by cloudy conditions, which pose a serious challenge to many remote sensing efforts. Utilization of Synthetic Aperture Radar (SAR) hence is promoted, as this warrants data availability at fixed intervals. Performing land cover mapping at the deforestation frontier in the Brazilian states of Pará and Mato Grosso, the aim of this thesis is to evaluate latest concepts from machine learning and SAR remote sensing in the light of real world applicability. As a cumulative effort, this thesis provides a scalable method based on Markov Random Fields, to increase classification performance. This method is especially useful to enhance the outcome of SAR classifications, as it directly addresses inherent SAR properties such as multi-temporality and speckle. Furthermore, ALOS-2, RADARSAT-2, and TerraSAR-X, which are current SAR sensors fulfilling different properties with regard to ground resolution and wavelength, are being investigated concerning their synergetic potentials for the mapping of vegetated LULC classes of the Brazilian Amazon. Here, the additional value of combining multiple frequencies is evaluated using reliable validation techniques based on area adjustment. Additionally, single performance of the three sensors is evaluated and their potentials concerning the task of tropical mapping are estimated. Lastly, different potentials of TanDEM-X for the purpose of tropical mapping are investigated. TanDEM-X is the first continuous spaceborne missionvi to offer a bi-static acquisition of data, enabling the generation of height models and the collection of coherence layers via a single pass

    Detection and height estimation of buildings from SAR and optical images using conditional random fields

    Get PDF
    [no abstract

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Joint filtering of SAR amplitude and interferometric phase with graph-cuts

    Get PDF
    Like other coherent imaging modalities, synthetic aperture radar (SAR) images suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. values respectively less (sub-figure 1, under-regularized), equal (sub-figure 2) or greater (sub figure 3, over-regularized) than βopt. Section IV-B presents some results of the joint regularization of high-resolution interferometric SAR images on two datasets: a 1200 × 1200 pixels region of interest from Toulouse city, France (figure 5), and a 1024 × 682 pixels region of interest from Saint-Paul sur Mer, France (figure 7). From the regularized images shown, it can be noticed that the noise has been efficiently reduced both in amplitude and phase images. The sharp transitions in the phase image that correspond to man-made structures are well preserved. Joint regularization gives more precise contours than independent regularization as they are co-located from the phase and amplitude images. Small objects also tend to be better preserved by joint-regularization as illustrated in figure 6 which shows an excerpt of a portion of streets with several aligned streetlights visible as brighter dots (higher reflectivity as well as higher altitude). values respectively less (sub-figure 1, under-regularized), equal (sub-figure 2) or greater (sub figure 3, over-regularized) than βopt. Section IV-B presents some results of the joint regularization of high-resolution interferometric SAR images on two datasets: a 1200 × 1200 pixels region of interest from Toulouse city, France (figure 5), and a 1024 × 682 pixels region of interest from Saint-Paul sur Mer, France (figure 7). From the regularized images shown, it can be noticed that the noise has been efficiently reduced both in amplitude and phase images. The sharp transitions in the phase image that correspond to man-made structures are well preserved. Joint regularization gives more precise contours than independent regularization as they are co-located from the phase and amplitude images. Small objects also tend to be better preserved by joint-regularization as illustrated in figure 6 which shows an excerpt of a portion of streets with several aligned streetlights visible as brighter dots (higher reflectivity as well as higher altitude).L’imagerie radar à ouverture synthétique (SAR), comme d’autres modalités d’imagerie cohérente, souffre de la présence du chatoiement (speckle). Cette perturbation rend difficile l’interprétation automatique des images et le filtrage est souvent une étape nécessaire à l’utilisation d’algorithmes de traitement d’images classiques. De nombreuses approches ont été proposées pour filtrer les images corrompues par un bruit de chatoiement. La modélisation par champs de Markov (CdM) fournit un cadre adapté pour exprimer à la fois les contraintes sur l’attache aux données et les propriétés désirées sur l’image filtrée. Dans ce contexte la minimisation de la variation totale a été abondamment utilisée afin de limiter les oscillations dans l’image régularisée tout en préservant les bords. Le bruit de chatoiement suit une distribution de probabilité à queue lourde et la formulation par CdM conduit à un problème de minimisation mettant en jeu des attaches aux données non-convexes. Une telle minimisation peut être obtenue par une approche d’optimisation combinatoire en calculant des coupures minimales de graphes. Bien que cette optimisation puisse être menée en théorie, ce type d’approche ne peut être appliqué en pratique sur les images de grande taille rencontrées dans les applications de télédétection à cause de leur grande consommation de mémoire. Le temps de calcul des algorithmes de minimisation approchée (en particulier α-extension) est généralement trop élevé quand la régularisation jointe de plusieurs images est considérée. Nous montrons qu’une solution satisfaisante peut être obtenue, en quelques itérations, en menant une exploration de l’espace de recherche avec de grands pas. Cette dernière est réalisée en utilisant des techniques de coupures minimales. Cet algorithme est appliqué pour régulariser de manière jointe à la fois l’amplitude et la phase interférométrique d’images SAR en milieu urbain

    Non-local methods for InSAR parameters estimation

    Get PDF
    In the thesis work the nonlocal paradigm has been investigated in the framework of Multitemporal SAR Interferometry, e.g. Differential Interferometry, Tomography, etc., and single InSAR pair, e.g. DEM generation. In the former, Adaptive Multi-Looking methods have been developed for the generation of interferometric data-stacks. Following the nonlocal approach, the proposed methods rely only on similar pixels according to a suitable similarity measure that exploits the stack's temporal information. An hybrid approach that jointly uses the nonlocal paradigm and transform domain filtering has been investigated for InSAR pair phase estimation. On the track of the BM3D and SARBM3D algorithms, different approaches to the filtering in the transform domain are investigated. Furthermore, a novel approach to the similarity computation and filtering, based on a relative-topography content of the interferometric phase rather than its absolute value, is proposed

    Development of an Extrinsic dual-cavity Fiber Fabry-Perot interferometer : Applications to periodic and non-periodic vibration measurements

    Get PDF
    Le travail présenté dans cette thèse concerne le développement et la caractérisation d'un interféromètre extrinsèque à double cavités de type Fabry-Perot (EFFPI) en vue de l'analyse de vibrations périodiques et non périodiques. Cette thèse est divisée en 5 chapitres. Dans le chapitre I, nous donnons un panorama des mesures de vibration et de leurs techniques associées de type optique ou non-optique. Nous fournissons une description générale des caractéristiques des interféromètres à fibre optique. Nous justifions le choix du système de type Fabry-Perot par ses propriétés de mesure sans contact, sa flexibilité géométrique, ainsi que sa facilité d'utilisation. Le chapitre II présente le principe de fonctionnement du EFFPI. Le système comprend une cavité virtuelle pseudo-duale obtenue par l'introduction d'une optique de polarisation dans le chemin optique de la cavité de mesure. Cette configuration permet d'obtenir deux signaux d'interférence en quadrature, ce qui élimine l'ambiguïté de direction. Les propriétés générales de l'interféromètre telles que la réflectance et la visibilité de franges ont été caractérisées expérimentalement. En particulier, les états de polarisation des faisceaux d'entrée et de sortie ont été étudiés pour mieux comprendre l'atténuation induite dans les signaux d'interférence afin de pouvoir minimiser ce phénomène. Dans le chapitre III, nous proposons une technique de démodulation de franges de type passage à zéro modifiée pour obtenir l'information de déplacement. La résolution obtenue dans cette technique de démodulation est déterminée par le nombre de sous-niveaux de décomposition des signaux d'interférence. Dans ce travail, une résolution de λ/64 s'est avérée suffisante pour des applications à des vibrations périodiques de relativement grande amplitude. Différentes excitations de type sinusoïdal, carré et triangulaire ont été testées. Les erreurs provoquées par la variation de température de la source laser ainsi que celles apportées par la variation d'orientation de la cible durant la mesure de déplacement ont été étudiées. Dans le chapitre IV, nous décrivons une technique de démodulation à poursuite de phase pouvant opérer sur une cible soumise à un déplacement non-périodique. Le développement d'un programme de simulation et de démodulation a permis l'analyse des erreurs de phase, l'effet du bruit aléatoire et du bruit de quantification, etc. Les erreurs de phase peuvent être corrigées par le démodulateur alors que les erreurs dues au bruit peuvent être réduites par une méthode de correction d'amplitude. Des tests expérimentaux réalisés à partir d'excitations de type carré avec un transducteur piézo-électrique (PZT) muni d'un capteur capacitif ont montré un très bon accord sur les mesures (différence de quelques nanomètres seulement). Nous avons utilisé le EFFPI pour deux applications spécifiques. En sismométrie, nous avons montré son aptitude à la mesure d'amplitude et de vitesse des vibrations. Dans une seconde application, le système a permis de mesurer de façon précise les variations de niveau d'un liquide dans un système d'inclinomètrie optique basée sur le principe des vases communicants. Le dernier chapitre donne les conclusions sur le travail réalisé et propose des perspectives afin d'améliorer les performances du capteur développé. ABSTRACT : The work involved in this thesis principally concerns the development and characterization of a dual-cavity Extrinsic Fiber Fabry-Perot Interferometer (EFFPI), with the specific aims of analyzing both periodic and non-periodic vibrations. This thesis is divided into five chapters. In chapter I, we provide a brief overview of vibration measurements and their associated techniques, both optical and non-optical. A general description of the characteristics of fiber optic interferometers most suited for this application is next included. The emphasis on non-contact measurement, geometrical flexibility, accessibility to the mesurand in question and the ease of deployment orientates our choice towards the fiber Fabry-Perot device. Chapter II presents the operating principles of the EFFPI. The device contains a “virtual” pseudo-dual-cavity which is generated due to the introduction of polarization-controlling optics into the optical path of the sensing cavity. This configuration enables two sets of “quadrature phase-shifted” interference signals to be obtained, hence eliminating the problem of directional ambiguity. The general properties of the interferometer, such as its reflectance and fringe visibility, have been characterized. More importantly, the polarization states of the injected and output lightwaves have been studied to further understand polarization-induced signal attenuation with the aim of reducing this parasitic effect. A modified zero-crossing fringe demodulation technique is described in chapter III for processing the interference signals from the dual-cavity EFFPI sensor into useful displacement information. The resolution of the demodulation scheme is determined by the number of sub-levels into which the interference fringes can be divided. In this work, a λ/64 resolution is deemed sufficient for application in periodic vibrations with relatively large amplitudes. Various signal types, such as sinusoidal, square, and triangular excitations have been applied and experimentally verified. Possible errors due to temperature variation of the laser source as well as the target orientation during displacement measurements are also investigated. In chapter IV, a phase-tracking technique is described for demodulating the interference signals into the required/desired displacement of a target subjected to non-periodic vibration. The development of a simulation and demodulation program enables the analysis of out-of-quadrature phase errors, random noise effects, quantization noise, etc. The detected phase errors can subsequently be corrected by the demodulator while the noise can be reduced via an amplitude correction method. Experimental tests under squarewave excitation carried out with a PieZo-electric Transducer (PZT) incorporating a capacitive sensor demonstrated excellent agreement (difference of only a few nanometers). The EFFPI sensor is next employed for two specific applications. In seismometry, the possibility of our sensor for detecting both vibration amplitudes and velocities is aptly demonstrated. In addition, the fiber sensor is also shown to be relatively accurate in measuring liquid level variation in an optical inclinometry set-up based on two communicating short-base vases. The final chapter concludes the work carried out in this thesis and proposes perspectives for further enhancing the performance of the developed senso

    Method for landslides detection with semi-automatic procedures: The case in the zone center-east of Cauca department, Colombia

    Get PDF
    Landslides are a common natural hazard that causes human casualties, but also infrastructure damage and land-use degradation. Therefore, a quantitative assessment of their presence is required by means of detecting and recognizing the potentially unstable areas. This research aims to develop a method supported on semiautomatic methods to detect potential mass movements at a regional scale. Five techniques were studied: Morphometry, SAR interferometry (InSAR), Persistent Scatterer InSAR (PS-InSAR), SAR polarimetry (PolSAR) and NDVI composites of Landsat 5, Landsat 7, and Landsat 8. The case study was chosen within the mid-eastern area of the Cauca state, which is characterised by its mountainous terrain and the presence of slope instabilities, officially registered in the CGS-SIMMA landslide inventory. This inventory revealed that the type `slide' occurred with 77.4% from the entire registries, `fall' with 16.5%, followed by `creeps' with 3%, flows with 2.6%, and `lateral spread' with 0.43%. As a result, we obtained the morphometric variables: slope, CONVI, TWI, landform, which were highly associated with landslides. The effect of a DEM in the processing flow of the InSAR method was similar for the InSAR coherence variable using the DEMs ASTER, PALSAR RTC, Topo-map, and SRTM. Then, a multiInSAR analysis gave displacement velocities in the LOS direction between -10 and 10 mm/year. With the dual-PolSAR analysis (Sentinel-1), VH and VV C-band polarised radar energy emitted median values of backscatters, for landslides, about of -14.5 dB for VH polarisation and -8.5 dB for VV polarisation. Also, L-band fully polarimetric NASA-UAVSAR data allowed to nd the mechanism of dispersion of CGS landslide inventory: 39% for surface scattering, 46.4% for volume dispersion, and 14.6% for double-bounce scattering. The optical remote sensing provided NDVI composites derived from Landsat series between 2012 and 2016, showing that NDVI values between 0.40 and 0.70 had a high correlation to landslides. In summary, we found the highest categories related to landslides by Weight of Evidence method (WofE) for each spaceborne technique applied. Finally, these results were merged to generate the landslide detection model by using the supervised machine learning method of Random Forest. By taking training and test samples, the precision of the detection model was of about 70% for the rotational and translational types.Los deslizamientos son una amenaza natural que causa pérdidas humanas, daños a la infraestructura y degradación del suelo. Una evaluación cuantitativa de su presencia se requiere mediante la detección y el reconocimiento de potenciales áreas inestables. Esta investigación tuvo como alcance desarrollar un método soportado en métodos semi-automáticos para detectar potenciales movimientos en masa a escala regional. Cinco técnicas fueron estudiadas: Morfometría, Interferometría radar, Interferometría con Persistent Scatterers, Polarimetría radar y composiciones del NDVI con los satélites Landsat 5, Landsat 7 y Landsat 8. El caso de estudio se seleccionó dentro de la región intermedia al este del departamento del Cauca, la cual se caracteriza por terreno montañoso y la presencia de inestabilidades de la pendiente oficialmente registrados en el servicio SIMMA del Servicio Geológico Colombiano. Este inventario reveló que el tipo de movimiento deslizamiento ocurrió con una frecuencia relativa de 77.4%, caidos con el 16.5% de los casos y reptaciones con 3%, flujos con 2.6% y propagación lateral con 0.43%. Como resultado, se obtuvo las variables morfométricas: pendiente, convergencia, índice topográfico de humedad y forma del terreno altamente asociados con los deslizamientos. El efecto de un DEM en el procesamiento del método InSAR fue similar para la variable coherencia usando los DEMs: ASTER, PAlSAR RTC, Topo-map y SRTM. Un análisis Multi-InSAR estimó velocidades de desplazamiento en dirección de vista del radar entre -10 y 10 mm/año. El análisis de polarimetría dual del Sentinel-1 arrojó valores de retrodispersión promedio de -14.5 dB en la banda VH y -8.5dB en la banda VV. Las cuatro polarimetrías del sensor aéreo UAVSAR permitió caracterizar el mecanismo de dispersión del Inventario de Deslizamiento así: 39% en el mecanismo de superficie, 46.4% en el mecanismo de volumen y 14.6% en el mecanismo de doble rebote. La información generada en el rango óptico permitió obtener composiciones de NDVI derivados de la plataforma Landsat entre los años 2012 y 2016, mostrando que el rango entre 0.4 y 0.7 tuvieron una alta asociación con los deslizamientos. En esta investigación se determinaron las categorías de las variables de Teledetección más altamente relacionadas con los movimientos en masa mediante el método de Pesos de Evidencias (WofE). Finalmente, estos resultados se fusionaron para generar el modelo de detección de deslizamientos usando el método supervisado de aprendizaje de máquina Random Forest. Tomando muestras aleatorias para entrenar y validar el modelo en una proporción 70:30, el modelo de detección, especialmente los movimientos de tipo rotacional y traslacional fueron clasificados con una tasa general de éxito del 70%.Ministerio de CienciasConvocatoria 647 de 2014Research line: Geotechnics and Geoenvironmental HazardDoctorad
    corecore