86 research outputs found

    Fast filtering image fusion

    Full text link
    © 2017 SPIE and IS & T. Image fusion aims at exploiting complementary information in multimodal images to create a single composite image with extended information content. An image fusion framework is proposed for different types of multimodal images with fast filtering in the spatial domain. First, image gradient magnitude is used to detect contrast and image sharpness. Second, a fast morphological closing operation is performed on image gradient magnitude to bridge gaps and fill holes. Third, the weight map is obtained from the multimodal image gradient magnitude and is filtered by a fast structure-preserving filter. Finally, the fused image is composed by using a weighed-sum rule. Experimental results on several groups of images show that the proposed fast fusion method has a better performance than the state-of-the-art methods, running up to four times faster than the fastest baseline algorithm

    Fusion of Infrared and Visible Images Based on Non-subsample Contourlet Transform

    Get PDF
    For the single spectrum image could not fully express the target feature information, this paper proposed a multispectral image fusion method based on non-subsample contourlet transform (NSCT). For the low frequency coefficients decomposed, fourth-order correlation coefficient is used to calculate the correlation between each low frequency coefficients, averaging fusion for the higher correlation coefficient, weight phase congruency fusion for the low correlation coefficient. For high frequency coefficients, Gaussian weight sum modified Laplace method is used for fusing, to retain more local structure details. Simulation results show that the method effectively retain the image structure information and more local details, and increase the image contrast

    Multisensor image fusion approach utilizing hybrid pre-enhancement and double nonsubsampled contourlet transform

    Get PDF
    A multisensor image fusion approach established on the hybrid-domain image enhancement and double nonsubsampled contourlet transform (NSCT) is proposed. The hybrid-domain pre-enhancement algorithm can promote the contrast of the visible color image. Different fusion rules are, respectively, selected and applied to obtain fusion results. The double NSCT framework is introduced to obtain better fusion performance than the general single NSCT framework. Experimental outcomes in fused images and performance results demonstrate that the presented approach is apparently more advantageous

    Combine Target Extraction and Enhancement Methods to Fuse Infrared and LLL Images

    Get PDF
    For getting the useful object information from infrared image and mining more detail of low light level (LLL) image, we propose a new fusion method based on segmentation and enhancement methods in the paper. First, using 2D maximum entropy method to segment the original infrared image for extracting infrared target, enhancing original LLL image by Zadeh transform for mining more detail information, on the basis of the segmented map to fuse the enhanced LLL image and original infrared image. Then, original infrared image, the enhanced LLL image and the first fused image are used to realize fusion in non-subsampled contourlet transform (NSCT) domain, we get the second fused image. By contrast of experiments, the fused image of the second fused method’s visual effect is better than other methods’ from the literature. Finally, Objective evaluation is used to evaluate the fused images’ quality, its results also show that the proposed method can pop target information, improve fused image’s resolution and contrast

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics

    A new pulse coupled neural network (PCNN) for brain medical image fusion empowered by shuffled frog leaping algorithm

    Get PDF
    Recent research has reported the application of image fusion technologies in medical images in a wide range of aspects, such as in the diagnosis of brain diseases, the detection of glioma and the diagnosis of Alzheimer’s disease. In our study, a new fusion method based on the combination of the shuffled frog leaping algorithm (SFLA) and the pulse coupled neural network (PCNN) is proposed for the fusion of SPECT and CT images to improve the quality of fused brain images. First, the intensity-hue-saturation (IHS) of a SPECT and CT image are decomposed using a non-subsampled contourlet transform (NSCT) independently, where both low-frequency and high-frequency images, using NSCT, are obtained. We then used the combined SFLA and PCNN to fuse the high-frequency sub-band images and low-frequency images. The SFLA is considered to optimize the PCNN network parameters. Finally, the fused image was produced from the reversed NSCT and reversed IHS transforms. We evaluated our algorithms against standard deviation (SD), mean gradient (Ḡ), spatial frequency (SF) and information entropy (E) using three different sets of brain images. The experimental results demonstrated the superior performance of the proposed fusion method to enhance both precision and spatial resolution significantly
    • …
    corecore