13,073 research outputs found

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    Full text link
    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of functions; (b) A local hidden variable model needs only a constant amount of communication to create, within an arbitrarily small statistical distance, a distribution resulted from local measurements of an entangled quantum state, as long as the number of measurement outcomes is constant.Comment: A preliminary version of this paper appears as part of an article in Proceedings of the the 37th ACM Symposium on Theory of Computing (STOC 2005), 460--467, 200

    Distributed Weight Selection in Consensus Protocols by Schatten Norm Minimization

    Full text link
    In average consensus protocols, nodes in a network perform an iterative weighted average of their estimates and those of their neighbors. The protocol converges to the average of initial estimates of all nodes found in the network. The speed of convergence of average consensus protocols depends on the weights selected on links (to neighbors). We address in this paper how to select the weights in a given network in order to have a fast speed of convergence for these protocols. We approximate the problem of optimal weight selection by the minimization of the Schatten p-norm of a matrix with some constraints related to the connectivity of the underlying network. We then provide a totally distributed gradient method to solve the Schatten norm optimization problem. By tuning the parameter p in our proposed minimization, we can simply trade-off the quality of the solution (i.e. the speed of convergence) for communication/computation requirements (in terms of number of messages exchanged and volume of data processed). Simulation results show that our approach provides very good performance already for values of p that only needs limited information exchange. The weight optimization iterative procedure can also run in parallel with the consensus protocol and form a joint consensus-optimization procedure.Comment: N° RR-8078 (2012
    • …
    corecore