6 research outputs found

    A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations

    Full text link
    We propose a new class of semi-implicit methods for solving nonlinear fractional differential equations and study their stability. Several versions of our new schemes are proved to be unconditionally stable by choosing suitable parameters. Subsequently, we develop an efficient strategy to calculate the discrete convolution for the approximation of the fractional operator in the semi-implicit method and we derive an error bound of the fast convolution. The memory requirement and computational cost of the present semi-implicit methods with a fast convolution are about O(NlognT)O(N\log n_T) and O(NnTlognT)O(Nn_T\log n_T), respectively, where NN is a suitable positive integer and nTn_T is the final number of time steps. Numerical simulations, including the solution of a system of two nonlinear fractional diffusion equations with different fractional orders in two-dimensions, are presented to verify the effectiveness of the semi-implicit methods.Comment: 25 pages, 10 figure

    Efficient multistep methods for tempered fractional calculus: Algorithms and Simulations

    Full text link
    In this work, we extend the fractional linear multistep methods in [C. Lubich, SIAM J. Math. Anal., 17 (1986), pp.704--719] to the tempered fractional integral and derivative operators in the sense that the tempered fractional derivative operator is interpreted in terms of the Hadamard finite-part integral. We develop two fast methods, Fast Method I and Fast Method II, with linear complexity to calculate the discrete convolution for the approximation of the (tempered) fractional operator. Fast Method I is based on a local approximation for the contour integral that represents the convolution weight. Fast Method II is based on a globally uniform approximation of the trapezoidal rule for the integral on the real line. Both methods are efficient, but numerical experimentation reveals that Fast Method II outperforms Fast Method I in terms of accuracy, efficiency, and coding simplicity. The memory requirement and computational cost of Fast Method II are O(Q)O(Q) and O(QnT)O(Qn_T), respectively, where nTn_T is the number of the final time steps and QQ is the number of quadrature points used in the trapezoidal rule. The effectiveness of the fast methods is verified through a series of numerical examples for long-time integration, including a numerical study of a fractional reaction-diffusion model

    A discrete least squares collocation method for two-dimensional nonlinear time-dependent partial differential equations

    Full text link
    In this paper, we develop regularized discrete least squares collocation and finite volume methods for solving two-dimensional nonlinear time-dependent partial differential equations on irregular domains. The solution is approximated using tensor product cubic spline basis functions defined on a background rectangular (interpolation) mesh, which leads to high spatial accuracy and straightforward implementation, and establishes a solid base for extending the computational framework to three-dimensional problems. A semi-implicit time-stepping method is employed to transform the nonlinear partial differential equation into a linear boundary value problem. A key finding of our study is that the newly proposed mesh-free finite volume method based on circular control volumes reduces to the collocation method as the radius limits to zero. Both methods produce a large constrained least-squares problem that must be solved at each time step in the advancement of the solution. We have found that regularization yields a relatively well-conditioned system that can be solved accurately using QR factorization. An extensive numerical investigation is performed to illustrate the effectiveness of the present methods, including the application of the new method to a coupled system of time-fractional partial differential equations having different fractional indices in different (irregularly shaped) regions of the solution domain
    corecore