10,368 research outputs found

    Dynamic Path Planning and Replanning for Mobile Robots using RRT*

    Full text link
    It is necessary for a mobile robot to be able to efficiently plan a path from its starting, or current, location to a desired goal location. This is a trivial task when the environment is static. However, the operational environment of the robot is rarely static, and it often has many moving obstacles. The robot may encounter one, or many, of these unknown and unpredictable moving obstacles. The robot will need to decide how to proceed when one of these obstacles is obstructing it's path. A method of dynamic replanning using RRT* is presented. The robot will modify it's current plan when an unknown random moving obstacle obstructs the path. Various experimental results show the effectiveness of the proposed method

    Conditional Task and Motion Planning through an Effort-based Approach

    Full text link
    This paper proposes a preliminary work on a Conditional Task and Motion Planning algorithm able to find a plan that minimizes robot efforts while solving assigned tasks. Unlike most of the existing approaches that replan a path only when it becomes unfeasible (e.g., no collision-free paths exist), the proposed algorithm takes into consideration a replanning procedure whenever an effort-saving is possible. The effort is here considered as the execution time, but it is extensible to the robot energy consumption. The computed plan is both conditional and dynamically adaptable to the unexpected environmental changes. Based on the theoretical analysis of the algorithm, authors expect their proposal to be complete and scalable. In progress experiments aim to prove this investigation
    • …
    corecore