2,556 research outputs found

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor

    Slepian-Wolf Coding Over Cooperative Relay Networks

    Full text link
    This paper deals with the problem of multicasting a set of discrete memoryless correlated sources (DMCS) over a cooperative relay network. Necessary conditions with cut-set interpretation are presented. A \emph{Joint source-Wyner-Ziv encoding/sliding window decoding} scheme is proposed, in which decoding at each receiver is done with respect to an ordered partition of other nodes. For each ordered partition a set of feasibility constraints is derived. Then, utilizing the sub-modular property of the entropy function and a novel geometrical approach, the results of different ordered partitions are consolidated, which lead to sufficient conditions for our problem. The proposed scheme achieves operational separation between source coding and channel coding. It is shown that sufficient conditions are indeed necessary conditions in two special cooperative networks, namely, Aref network and finite-field deterministic network. Also, in Gaussian cooperative networks, it is shown that reliable transmission of all DMCS whose Slepian-Wolf region intersects the cut-set bound region within a constant number of bits, is feasible. In particular, all results of the paper are specialized to obtain an achievable rate region for cooperative relay networks which includes relay networks and two-way relay networks.Comment: IEEE Transactions on Information Theory, accepte

    Capacity of a Class of Broadcast Relay Channels

    Full text link
    Consider the broadcast relay channel (BRC) which consists of a source sending information over a two user broadcast channel in presence of two relay nodes that help the transmission to the destinations. Clearly, this network with five nodes involves all the problems encountered in relay and broadcast channels. New inner bounds on the capacity region of this class of channels are derived. These results can be seen as a generalization and hence unification of previous work in this topic. Our bounds are based on the idea of recombination of message bits and various effective coding strategies for relay and broadcast channels. Capacity result is obtained for the semi-degraded BRC-CR, where one relay channel is degraded while the other one is reversely degraded. An inner and upper bound is also presented for the degraded BRC with common relay (BRC-CR), where both the relay and broadcast channel are degraded which is the capacity for the Gaussian case. Application of these results arise in the context of opportunistic cooperation of cellular networks.Comment: 5 pages, to appear in proc. IEEE ISIT, June 201
    corecore