217 research outputs found

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    InP membrane photonics for large-scale integration

    Get PDF

    Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview

    Get PDF
    This broad review summarizes recent advances and “hot” research topics in nanophononics and elastic, acoustic, and mechanical metamaterials based on results presented by the authors at the EUROMECH 610 Colloquium held on April 25–27, 2022 in Benicássim, Spain. The key goal of the colloquium was to highlight important developments in these areas, particularly new results that emerged during the last two years. This work thus presents a “snapshot” of the state-of-the-art of different nanophononics- and metamaterial-related topics rather than a historical view on these subjects, in contrast to a conventional review article. The introduction of basic definitions for each topic is followed by an outline of design strategies for the media under consideration, recently developed analysis and implementation techniques, and discussions of current challenges and promising applications. This review, while not comprehensive, will be helpful especially for early-career researchers, among others, as it offers a broad view of the current state-of-the-art and highlights some unique and flourishing research in the mentioned fields, providing insight into multiple exciting research directions

    InP membrane photonics for large-scale integration

    Get PDF

    Dynamic Nanophotonic Structures Leveraging Chalcogenide Phase-Change Materials

    Get PDF
    Chip-scale nanophotonic devices have the potential to enable next-generation imaging, computing, communication, and engineered quantum systems with very stringent performance requirements on size, power, integrability, stability, and bandwidth. The emergence of meta-optic devices with deep subwavelength features has enabled the formation of ultra-thin flat optical structures to replace bulky conventional counterparts in free-space applications. Nevertheless, progress in meta-optics has been slowed due to the passive nature of existing devices and the urgent need for a reliable, fast, low-power, and robust reconfiguration mechanism. In this research, I devised a new material and device platform to resolve this challenge. Through detailed theoretical design, nanofabrication, and experimental demonstration, I demonstrated the unique features of my proposed platform as an essential building block of truly scalable adaptive flat optics for the active manipulation of optical wavefronts. One of the key attributes of this research is the integration of CMOS-compatible materials for the fabrication of passive devices with phase-change materials that provide the largest known modulation of the index of refraction upon stimulation with an optical or electrical signal. A unique selection of phase-change materials for operation in the near-infrared and visible wavelengths has been made, followed by developing the optimum deposition and fabrication processes for the realization of nanophotonics devices that integrate these functional materials with semiconductor and plasmonic materials. A major breakthrough in this process was the design and realization of integrated electrical stimulation circuitry with far better performance compared to existing solutions. Using this platform, I experimentally demonstrated the first electrically tunable meta-optic structure for fast optical switching with a high contrast ratio and dynamic wavefront scanning with a large steering angle. This is a major achievement as it essentially allows the engineering of a desired optical wavefront with fast reconfigurability at low power consumption. In an independent work, I demonstrated, for the first time, a nonvolatile meta-optic structure for high-resolution, wide-gamut, and high-contrast microdisplays with added polarization controllability and the possibility of implementation on a flexible substrate. Further features of this metaphotonic display include: 1) full addressability at the microscale pixel via fast electrical pulses; 2) super-resolution pixels with controllable brightness and contrast; and 3) a wide range of colors with high saturation and purity. Lastly, for the first time, I realized a hybrid photonic-plasmonic meta-optic platform with active control over the spatial, spectral, and temporal properties of an optical wavefront. This is a major achievement as it essentially allows the engineering of a desired optical wavefront with fast reconfigurability at low power consumption. These demonstrations are now being pursued in different directions for novel systems for imaging, sensing, computing, and quantum applications, just to name a few.Ph.D

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF
    corecore