777 research outputs found

    A Theme-Rewriting Approach for Generating Algebra Word Problems

    Full text link
    Texts present coherent stories that have a particular theme or overall setting, for example science fiction or western. In this paper, we present a text generation method called {\it rewriting} that edits existing human-authored narratives to change their theme without changing the underlying story. We apply the approach to math word problems, where it might help students stay more engaged by quickly transforming all of their homework assignments to the theme of their favorite movie without changing the math concepts that are being taught. Our rewriting method uses a two-stage decoding process, which proposes new words from the target theme and scores the resulting stories according to a number of factors defining aspects of syntactic, semantic, and thematic coherence. Experiments demonstrate that the final stories typically represent the new theme well while still testing the original math concepts, outperforming a number of baselines. We also release a new dataset of human-authored rewrites of math word problems in several themes.Comment: To appear EMNLP 201

    Graph Neural Networks for Natural Language Processing: A Survey

    Full text link
    Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.Comment: 127 page

    Knowledge Representation, Reasoning and Learning for Non-Extractive Reading Comprehension

    Get PDF
    abstract: While in recent years deep learning (DL) based approaches have been the popular approach in developing end-to-end question answering (QA) systems, such systems lack several desired properties, such as the ability to do sophisticated reasoning with knowledge, the ability to learn using less resources and interpretability. In this thesis, I explore solutions that aim to address these drawbacks. Towards this goal, I work with a specific family of reading comprehension tasks, normally referred to as the Non-Extractive Reading Comprehension (NRC), where the given passage does not contain enough information and to correctly answer sophisticated reasoning and ``additional knowledge" is required. I have organized the NRC tasks into three categories. Here I present my solutions to the first two categories and some preliminary results on the third category. Category 1 NRC tasks refer to the scenarios where the required ``additional knowledge" is missing but there exists a decent natural language parser. For these tasks, I learn the missing ``additional knowledge" with the help of the parser and a novel inductive logic programming. The learned knowledge is then used to answer new questions. Experiments on three NRC tasks show that this approach along with providing an interpretable solution achieves better or comparable accuracy to that of the state-of-the-art DL based approaches. The category 2 NRC tasks refer to the alternate scenario where the ``additional knowledge" is available but no natural language parser works well for the sentences of the target domain. To deal with these tasks, I present a novel hybrid reasoning approach which combines symbolic and natural language inference (neural reasoning) and ultimately allows symbolic modules to reason over raw text without requiring any translation. Experiments on two NRC tasks shows its effectiveness. The category 3 neither provide the ``missing knowledge" and nor a good parser. This thesis does not provide an interpretable solution for this category but some preliminary results and analysis of a pure DL based approach. Nonetheless, the thesis shows beyond the world of pure DL based approaches, there are tools that can offer interpretable solutions for challenging tasks without using much resource and possibly with better accuracy.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Leveraging Formulae and Text for Improved Math Retrieval

    Get PDF
    Large collections containing millions of math formulas are available online. Retrieving math expressions from these collections is challenging. Users can use formula, formula+text, or math questions to express their math information needs. The structural complexity of formulas requires specialized processing. Despite the existence of math search systems and online community question-answering websites for math, little is known about mathematical information needs. This research first explores the characteristics of math searches using a general search engine. The findings show how math searches are different from general searches. Then, test collections for math-aware search are introduced. The ARQMath test collections have two main tasks: 1) finding answers for math questions and 2) contextual formula search. In each test collection (ARQMath-1 to -3) the same collection is used, Math Stack Exchange posts from 2010 to 2018, introducing different topics for each task. Compared to the previous test collections, ARQMath has a much larger number of diverse topics, and improved evaluation protocol. Another key role of this research is to leverage text and math information for improved math information retrieval. Three formula search models that only use the formula, with no context are introduced. The first model is an n-gram embedding model using both symbol layout tree and operator tree representations. The second model uses tree-edit distance to re-rank the results from the first model. Finally, a learning-to-rank model that leverages full-tree, sub-tree, and vector similarity scores is introduced. To use context, Math Abstract Meaning Representation (MathAMR) is introduced, which generalizes AMR trees to include math formula operations and arguments. This MathAMR is then used for contextualized formula search using a fine-tuned Sentence-BERT model. The experiments show tree-edit distance ranking achieves the current state-of-the-art results on contextual formula search task, and the MathAMR model can be beneficial for re-ranking. This research also addresses the answer retrieval task, introducing a two-step retrieval model in which similar questions are first found and then answers previously given to those similar questions are ranked. The proposed model, fine-tunes two Sentence-BERT models, one for finding similar questions and another one for ranking the answers. For Sentence-BERT model, raw text as well as MathAMR are used
    • …
    corecore