4 research outputs found

    Нарушение схемы тела при ампутации нижних конечностей

    Get PDF
    В статье представлено исследование нарушений схемы тела у пациентов с ампутацией нижних конечностей в параметрах право-левой ориентировки, пространственного положения и cоотношения частей тела относительно друг друга, объективизирующих показателей, а также адекватности/неадекватности представлений о размерах частей собственного тела и собственном телосложении в целом. В результате исследования выявлены нарушения схемы пациентов с ампутацией нижних конечностей вне зависимости от степени (ампутация одной конечности, ампутация двух конечностей) и глубины (ампутация на уровне голени, ампутация на уровне бедра) ампутации, проявляющиеся в пространственной и квазипространственной дезориентировке, искажении восприятия размеров частей собственного тела, неадекватности восприятия собственного телосложения, высоком уровне диссоциации

    Learning agent's spatial configuration from sensorimotor invariants

    Full text link
    The design of robotic systems is largely dictated by our purely human intuition about how we perceive the world. This intuition has been proven incorrect with regard to a number of critical issues, such as visual change blindness. In order to develop truly autonomous robots, we must step away from this intuition and let robotic agents develop their own way of perceiving. The robot should start from scratch and gradually develop perceptual notions, under no prior assumptions, exclusively by looking into its sensorimotor experience and identifying repetitive patterns and invariants. One of the most fundamental perceptual notions, space, cannot be an exception to this requirement. In this paper we look into the prerequisites for the emergence of simplified spatial notions on the basis of a robot's sensorimotor flow. We show that the notion of space as environment-independent cannot be deduced solely from exteroceptive information, which is highly variable and is mainly determined by the contents of the environment. The environment-independent definition of space can be approached by looking into the functions that link the motor commands to changes in exteroceptive inputs. In a sufficiently rich environment, the kernels of these functions correspond uniquely to the spatial configuration of the agent's exteroceptors. We simulate a redundant robotic arm with a retina installed at its end-point and show how this agent can learn the configuration space of its retina. The resulting manifold has the topology of the Cartesian product of a plane and a circle, and corresponds to the planar position and orientation of the retina.Comment: 26 pages, 5 images, published in Robotics and Autonomous System
    corecore