3 research outputs found

    Nonlinear predictive threshold model for real-time abnormal gait detection

    Get PDF
    Falls are critical events for human health due to the associated risk of physical and psychological injuries. Several fall related systems have been developed in order to reduce injuries. Among them, fall-risk prediction systems are one of the most promising approaches, as they strive to predict a fall before its occurrence. A category of fall-risk prediction systems evaluates balance and muscle strength through some clinical functional assessment tests, while other prediction systems investigate the recognition of abnormal gait patterns to predict a fall in real-time. The main contribution of this paper is a nonlinear model of user gait in combination with a threshold-based classification in order to recognize abnormal gait patterns with low complexity and high accuracy. In addition, a dataset with realistic parameters is prepared to simulate abnormal walks and to evaluate fall prediction methods. The accelerometer and gyroscope sensors available in a smartphone have been exploited to create the dataset. The proposed approach has been implemented and compared with the state-of-the-art approaches showing that it is able to predict an abnormal walk with a higher accuracy (93.5%) and a higher efficiency (up to 3.5 faster) than other feasible approaches

    High Performance Computing using Infiniband-based clusters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A neural network model based on co-occurrence matrix for fall prediction

    No full text
    Fall avoidance systems reduce injuries due to unintentional falls, but most of them are fall detections that activate an alarm after the fall occurrence. Since predicting a fall is the most promising approach to avoid a fall injury, this study proposes a method based on new features and multilayer perception that outperforms state-of-the-art approaches. Since accelerometer and gyroscope embedded in a smartphone are recognized to be precise enough to be used in fall avoidance systems, they have been exploited in an experimental analysis in order to compare the proposal with state-of-the-art approaches. The results have shown that the proposed approach improves the accuracy from 83% to 90%
    corecore