11,555 research outputs found

    Applications of Neural Networks in Hadron Physics

    Full text link
    The Bayesian approach for the feed-forward neural networks is reviewed. Its potential for usage in hadron physics is discussed. As an example of the application the study of the the two-photon exchange effect is presented. We focus on the model comparison, the estimation of the systematic uncertainties due to the choice of the model, and the over-fitting. As an illustration the predictions of the cross sections ratio dΟƒ(e+pβ†’e+p)/dΟƒ(eβˆ’pβ†’eβˆ’p)d \sigma(e^+ p\to e^+ p)/d \sigma(e^- p\to e^- p) are given together with the estimate of the uncertainty due to the parametrization choice.Comment: 16 pages, 9 figures, Invited contribution to the Journal of Physics G: Nuclear and Particle Physics focus section entitled "Enhancing the interaction between nuclear experiment and theory through information and statistics", in pres

    Proximity Variational Inference

    Full text link
    Variational inference is a powerful approach for approximate posterior inference. However, it is sensitive to initialization and can be subject to poor local optima. In this paper, we develop proximity variational inference (PVI). PVI is a new method for optimizing the variational objective that constrains subsequent iterates of the variational parameters to robustify the optimization path. Consequently, PVI is less sensitive to initialization and optimization quirks and finds better local optima. We demonstrate our method on three proximity statistics. We study PVI on a Bernoulli factor model and sigmoid belief network with both real and synthetic data and compare to deterministic annealing (Katahira et al., 2008). We highlight the flexibility of PVI by designing a proximity statistic for Bayesian deep learning models such as the variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014). Empirically, we show that PVI consistently finds better local optima and gives better predictive performance

    Single-trial estimation of stimulus and spike-history effects on time-varying ensemble spiking activity of multiple neurons: a simulation study

    Full text link
    Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity.Comment: 12 pages, 3 figure

    Mix-nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous And Discrete Variables

    Full text link
    Recently developed techniques have made it possible to quickly learn accurate probability density functions from data in low-dimensional continuous space. In particular, mixtures of Gaussians can be fitted to data very quickly using an accelerated EM algorithm that employs multiresolution kd-trees (Moore, 1999). In this paper, we propose a kind of Bayesian networks in which low-dimensional mixtures of Gaussians over different subsets of the domain's variables are combined into a coherent joint probability model over the entire domain. The network is also capable of modeling complex dependencies between discrete variables and continuous variables without requiring discretization of the continuous variables. We present efficient heuristic algorithms for automatically learning these networks from data, and perform comparative experiments illustrated how well these networks model real scientific data and synthetic data. We also briefly discuss some possible improvements to the networks, as well as possible applications.Comment: Appears in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI2000

    Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs

    Full text link
    Building on the success of deep learning, two modern approaches to learn a probability model from the data are Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs). VAEs consider an explicit probability model for the data and compute a generative distribution by maximizing a variational lower-bound on the log-likelihood function. GANs, however, compute a generative model by minimizing a distance between observed and generated probability distributions without considering an explicit model for the observed data. The lack of having explicit probability models in GANs prohibits computation of sample likelihoods in their frameworks and limits their use in statistical inference problems. In this work, we resolve this issue by constructing an explicit probability model that can be used to compute sample likelihood statistics in GANs. In particular, we prove that under this probability model, a family of Wasserstein GANs with an entropy regularization can be viewed as a generative model that maximizes a variational lower-bound on average sample log likelihoods, an approach that VAEs are based on. This result makes a principled connection between two modern generative models, namely GANs and VAEs. In addition to the aforementioned theoretical results, we compute likelihood statistics for GANs trained on Gaussian, MNIST, SVHN, CIFAR-10 and LSUN datasets. Our numerical results validate the proposed theory

    Gradient Estimation Using Stochastic Computation Graphs

    Full text link
    In a variety of problems originating in supervised, unsupervised, and reinforcement learning, the loss function is defined by an expectation over a collection of random variables, which might be part of a probabilistic model or the external world. Estimating the gradient of this loss function, using samples, lies at the core of gradient-based learning algorithms for these problems. We introduce the formalism of stochastic computation graphs---directed acyclic graphs that include both deterministic functions and conditional probability distributions---and describe how to easily and automatically derive an unbiased estimator of the loss function's gradient. The resulting algorithm for computing the gradient estimator is a simple modification of the standard backpropagation algorithm. The generic scheme we propose unifies estimators derived in variety of prior work, along with variance-reduction techniques therein. It could assist researchers in developing intricate models involving a combination of stochastic and deterministic operations, enabling, for example, attention, memory, and control actions.Comment: Advances in Neural Information Processing Systems 28 (NIPS 2015

    A Nonlinear Spectral Method for Core--Periphery Detection in Networks

    Full text link
    We derive and analyse a new iterative algorithm for detecting network core--periphery structure. Using techniques in nonlinear Perron-Frobenius theory, we prove global convergence to the unique solution of a relaxed version of a natural discrete optimization problem. On sparse networks, the cost of each iteration scales linearly with the number of nodes, making the algorithm feasible for large-scale problems. We give an alternative interpretation of the algorithm from the perspective of maximum likelihood reordering of a new logistic core--periphery random graph model. This viewpoint also gives a new basis for quantitatively judging a core--periphery detection algorithm. We illustrate the algorithm on a range of synthetic and real networks, and show that it offers advantages over the current state-of-the-art

    Topological Bayesian Optimization with Persistence Diagrams

    Full text link
    Finding an optimal parameter of a black-box function is important for searching stable material structures and finding optimal neural network structures, and Bayesian optimization algorithms are widely used for the purpose. However, most of existing Bayesian optimization algorithms can only handle vector data and cannot handle complex structured data. In this paper, we propose the topological Bayesian optimization, which can efficiently find an optimal solution from structured data using \emph{topological information}. More specifically, in order to apply Bayesian optimization to structured data, we extract useful topological information from a structure and measure the proper similarity between structures. To this end, we utilize persistent homology, which is a topological data analysis method that was recently applied in machine learning. Moreover, we propose the Bayesian optimization algorithm that can handle multiple types of topological information by using a linear combination of kernels for persistence diagrams. Through experiments, we show that topological information extracted by persistent homology contributes to a more efficient search for optimal structures compared to the random search baseline and the graph Bayesian optimization algorithm

    Graph Embedding with Rich Information through Heterogeneous Network

    Full text link
    Graph embedding has attracted increasing attention due to its critical application in social network analysis. Most existing algorithms for graph embedding only rely on the typology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this paper, we proposed a novel and general framework of representation learning for graph with rich text information through constructing a bipartite heterogeneous network. Specially, we designed a biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. The efficacy of our method is demonstrated by extensive comparison experiments with several baselines on various datasets. It improves the Micro-F1 and Macro-F1 of node classification by 10% and 7% on Cora dataset.Comment: 9 pages, 7 figures, 4 table

    A Novel Experimental Platform for In-Vessel Multi-Chemical Molecular Communications

    Full text link
    This work presents a new multi-chemical experimental platform for molecular communication where the transmitter can release different chemicals. This platform is designed to be inexpensive and accessible, and it can be expanded to simulate different environments including the cardiovascular system and complex network of pipes in industrial complexes and city infrastructures. To demonstrate the capabilities of the platform, we implement a time-slotted binary communication system where a bit-0 is represented by an acid pulse, a bit-1 by a base pulse, and information is carried via pH signals. The channel model for this system, which is nonlinear and has long memories, is unknown. Therefore, we devise novel detection algorithms that use techniques from machine learning and deep learning to train a maximum-likelihood detector. Using these algorithms the bit error rate improves by an order of magnitude relative to the approach used in previous works. Moreover, our system achieves a data rate that is an order of magnitude higher than any of the previous molecular communication platforms
    • …
    corecore