5,034 research outputs found

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie

    Fragility of the Commons under Prospect-Theoretic Risk Attitudes

    Full text link
    We study a common-pool resource game where the resource experiences failure with a probability that grows with the aggregate investment in the resource. To capture decision making under such uncertainty, we model each player's risk preference according to the value function from prospect theory. We show the existence and uniqueness of a pure Nash equilibrium when the players have heterogeneous risk preferences and under certain assumptions on the rate of return and failure probability of the resource. Greater competition, vis-a-vis the number of players, increases the failure probability at the Nash equilibrium; we quantify this effect by obtaining bounds on the ratio of the failure probability at the Nash equilibrium to the failure probability under investment by a single user. We further show that heterogeneity in attitudes towards loss aversion leads to higher failure probability of the resource at the equilibrium.Comment: Accepted for publication in Games and Economic Behavior, 201

    Strong Nash Equilibria in Games with the Lexicographical Improvement Property

    Get PDF
    We introduce a class of finite strategic games with the property that every deviation of a coalition of players that is profitable to each of its members strictly decreases the lexicographical order of a certain function defined on the set of strategy profiles. We call this property the Lexicographical Improvement Property (LIP) and show that it implies the existence of a generalized strong ordinal potential function. We use this characterization to derive existence, efficiency and fairness properties of strong Nash equilibria. We then study a class of games that generalizes congestion games with bottleneck objectives that we call bottleneck congestion games. We show that these games possess the LIP and thus the above mentioned properties. For bottleneck congestion games in networks, we identify cases in which the potential function associated with the LIP leads to polynomial time algorithms computing a strong Nash equilibrium. Finally, we investigate the LIP for infinite games. We show that the LIP does not imply the existence of a generalized strong ordinal potential, thus, the existence of SNE does not follow. Assuming that the function associated with the LIP is continuous, however, we prove existence of SNE. As a consequence, we prove that bottleneck congestion games with infinite strategy spaces and continuous cost functions possess a strong Nash equilibrium
    • …
    corecore