13,452 research outputs found

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763

    Monitoring Networked Applications With Incremental Quantile Estimation

    Full text link
    Networked applications have software components that reside on different computers. Email, for example, has database, processing, and user interface components that can be distributed across a network and shared by users in different locations or work groups. End-to-end performance and reliability metrics describe the software quality experienced by these groups of users, taking into account all the software components in the pipeline. Each user produces only some of the data needed to understand the quality of the application for the group, so group performance metrics are obtained by combining summary statistics that each end computer periodically (and automatically) sends to a central server. The group quality metrics usually focus on medians and tail quantiles rather than on averages. Distributed quantile estimation is challenging, though, especially when passing large amounts of data around the network solely to compute quality metrics is undesirable. This paper describes an Incremental Quantile (IQ) estimation method that is designed for performance monitoring at arbitrary levels of network aggregation and time resolution when only a limited amount of data can be transferred. Applications to both real and simulated data are provided.Comment: This paper commented in: [arXiv:0708.0317], [arXiv:0708.0336], [arXiv:0708.0338]. Rejoinder in [arXiv:0708.0339]. Published at http://dx.doi.org/10.1214/088342306000000583 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore