64 research outputs found

    Transfer Learning of Deep Learning Models for Cloud Masking in Optical Satellite Images

    Get PDF
    Los satélites de observación de la Tierra proporcionan una oportunidad sin precedentes para monitorizar nuestro planeta a alta resolución tanto espacial como temporal. Sin embargo, para procesar toda esta cantidad creciente de datos, necesitamos desarrollar modelos rápidos y precisos adaptados a las características específicas de los datos de cada sensor. Para los sensores ópticos, detectar las nubes en la imagen es un primer paso inevitable en la mayoría de aplicaciones tanto terrestres como oceánicas. Aunque detectar nubes brillantes y opacas es relativamente fácil, identificar automáticamente nubes delgadas semitransparentes o diferenciar nubes de nieve o superficies brillantes es mucho más difícil. Además, en el escenario actual, donde el número de sensores en el espacio crece constantemente, desarrollar metodologías para transferir modelos que funcionen con datos de nuevos satélites es una necesidad urgente. Por tanto, los objetivos de esta tesis son desarrollar modelos precisos de detección de nubes que exploten las diferentes propiedades de las imágenes de satélite y desarrollar metodologías para transferir esos modelos a otros sensores. La tesis está basada en cuatro trabajos los cuales proponen soluciones a estos problemas. En la primera contribución, "Multitemporal cloud masking in the Google Earth Engine", implementamos un modelo de detección de nubes multitemporal que se ejecuta en la plataforma Google Earth Engine y que supera los modelos operativos de Landsat-8. La segunda contribución, "Transferring deep learning models for Cloud Detection between Landsat-8 and Proba-V", es un caso de estudio de transferencia de un algoritmo de detección de nubes basado en aprendizaje profundo de Landsat-8 (resolución 30m, 12 bandas espectrales y muy buena calidad radiométrica) a Proba-V, que tiene una resolución de 333m, solo cuatro bandas y una calidad radiométrica peor. El tercer artículo, "Cross sensor adversarial domain adaptation of Landsat-8 and Proba-V images for cloud detection", propone aprender una transformación de adaptación de dominios que haga que las imágenes de Proba-V se parezcan a las tomadas por Landsat-8 con el objetivo de transferir productos diseñados con datos de Landsat-8 a Proba-V. Finalmente, la cuarta contribución, "Towards global flood mapping onboard low cost satellites with machine learning", aborda simultáneamente la detección de inundaciones y nubes con un único modelo de aprendizaje profundo, implementado para que pueda ejecutarse a bordo de un CubeSat (ϕSat-I) con un chip acelerador de aplicaciones de inteligencia artificial. El modelo está entrenado en imágenes Sentinel-2 y demostramos cómo transferir este modelo a la cámara del ϕSat-I. Este modelo se lanzó en junio de 2021 a bordo de la misión WildRide de D-Orbit para probar su funcionamiento en el espacio.Remote sensing sensors onboard Earth observation satellites provide a great opportunity to monitor our planet at high spatial and temporal resolutions. Nevertheless, to process all this ever-growing amount of data, we need to develop fast and accurate models adapted to the specific characteristics of the data acquired by each sensor. For optical sensors, detecting the clouds present in the image is an unavoidable first step for most of the land and ocean applications. Although detecting bright and opaque clouds is relatively easy, automatically identifying thin semi-transparent clouds or distinguishing clouds from snow or bright surfaces is much more challenging. In addition, in the current scenario where the number of sensors in orbit is constantly growing, developing methodologies to transfer models across different satellite data is a pressing need. Henceforth, the overreaching goal of this Thesis is to develop accurate cloud detection models that exploit the different properties of the satellite images, and to develop methodologies to transfer those models across different sensors. The four contributions of this Thesis are stepping stones in that direction. In the first contribution,"Multitemporal cloud masking in the Google Earth Engine", we implemented a lightweight multitemporal cloud detection model that runs on the Google Earth Engine platform and which outperforms the operational models for Landsat-8. The second contribution, "Transferring deep learning models for Cloud Detection between Landsat-8 and Proba-V", is a case-study of transferring a deep learning based cloud detection algorithm from Landsat-8 (30m resolution, 12 spectral bands and very good radiometric quality) to Proba-V, which has a lower{333m resolution, only four bands and a less accurate radiometric quality. The third paper, "Cross sensor adversarial domain adaptation of Landsat-8 and Proba-V images for cloud detection", proposes a learning-based domain adaptation transformation of Proba-V images to resemble those taken by Landsat-8, with the objective of transferring products designed on Landsat-8 to Proba-V. Finally, the fourth contribution, "Towards global flood mapping onboard low cost satellites with machine learning", tackles simultaneously cloud and flood water detection with a single deep learning model, which was implemented to run onboard a CubeSat (ϕSat-I) with an AI accelerator chip. In this case, the model is trained on Sentinel-2 and transferred to theϕSat-I camera. This model was launched in June 2021 onboard the Wild Ride D-Orbit mission in order to test its performance in space

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Model Diagnostics meets Forecast Evaluation: Goodness-of-Fit, Calibration, and Related Topics

    Get PDF
    Principled forecast evaluation and model diagnostics are vital in fitting probabilistic models and forecasting outcomes of interest. A common principle is that fitted or predicted distributions ought to be calibrated, ideally in the sense that the outcome is indistinguishable from a random draw from the posited distribution. Much of this thesis is centered on calibration properties of various types of forecasts. In the first part of the thesis, a simple algorithm for exact multinomial goodness-of-fit tests is proposed. The algorithm computes exact pp-values based on various test statistics, such as the log-likelihood ratio and Pearson\u27s chi-square. A thorough analysis shows improvement on extant methods. However, the runtime of the algorithm grows exponentially in the number of categories and hence its use is limited. In the second part, a framework rooted in probability theory is developed, which gives rise to hierarchies of calibration, and applies to both predictive distributions and stand-alone point forecasts. Based on a general notion of conditional T-calibration, the thesis introduces population versions of T-reliability diagrams and revisits a score decomposition into measures of miscalibration, discrimination, and uncertainty. Stable and efficient estimators of T-reliability diagrams and score components arise via nonparametric isotonic regression and the pool-adjacent-violators algorithm. For in-sample model diagnostics, a universal coefficient of determination is introduced that nests and reinterprets the classical R2R^2 in least squares regression. In the third part, probabilistic top lists are proposed as a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions. The probabilistic top list functional is elicited by strictly consistent evaluation metrics, based on symmetric proper scoring rules, which admit comparison of various types of predictions

    Translating computational modelling tools for clinical practice in congenital heart disease

    Get PDF
    Increasingly large numbers of medical centres worldwide are equipped with the means to acquire 3D images of patients by utilising magnetic resonance (MR) or computed tomography (CT) scanners. The interpretation of patient 3D image data has significant implications on clinical decision-making and treatment planning. In their raw form, MR and CT images have become critical in routine practice. However, in congenital heart disease (CHD), lesions are often anatomically and physiologically complex. In many cases, 3D imaging alone can fail to provide conclusive information for the clinical team. In the past 20-30 years, several image-derived modelling applications have shown major advancements. Tools such as computational fluid dynamics (CFD) and virtual reality (VR) have successfully demonstrated valuable uses in the management of CHD. However, due to current software limitations, these applications have remained largely isolated to research settings, and have yet to become part of clinical practice. The overall aim of this project was to explore new routes for making conventional computational modelling software more accessible for CHD clinics. The first objective was to create an automatic and fast pipeline for performing vascular CFD simulations. By leveraging machine learning, a solution was built using synthetically generated aortic anatomies, and was seen to be able to predict 3D aortic pressure and velocity flow fields with comparable accuracy to conventional CFD. The second objective was to design a virtual reality (VR) application tailored for supporting the surgical planning and teaching of CHD. The solution was a Unity-based application which included numerous specialised tools, such as mesh-editing features and online networking for group learning. Overall, the outcomes of this ongoing project showed strong indications that the integration of VR and CFD into clinical settings is possible, and has potential for extending 3D imaging and supporting the diagnosis, management and teaching of CHD

    Advance in Composite Gels

    Get PDF
    In the last few decades, various composite gels have been developed. In recent years, further advances have been made in the development of novel composite gels with potential applications in various fields. This reprint offers the latest findings of composite gels by experts throughout the world

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity

    Collected Papers (on various scientific topics), Volume XIII

    Get PDF
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.‬‬‬‬‬‬‬

    Democratizing machine learning

    Get PDF
    Modelle des maschinellen Lernens sind zunehmend in der Gesellschaft verankert, oft in Form von automatisierten Entscheidungsprozessen. Ein wesentlicher Grund dafür ist die verbesserte Zugänglichkeit von Daten, aber auch von Toolkits für maschinelles Lernen, die den Zugang zu Methoden des maschinellen Lernens für Nicht-Experten ermöglichen. Diese Arbeit umfasst mehrere Beiträge zur Demokratisierung des Zugangs zum maschinellem Lernen, mit dem Ziel, einem breiterem Publikum Zugang zu diesen Technologien zu er- möglichen. Die Beiträge in diesem Manuskript stammen aus mehreren Bereichen innerhalb dieses weiten Gebiets. Ein großer Teil ist dem Bereich des automatisierten maschinellen Lernens (AutoML) und der Hyperparameter-Optimierung gewidmet, mit dem Ziel, die oft mühsame Aufgabe, ein optimales Vorhersagemodell für einen gegebenen Datensatz zu finden, zu vereinfachen. Dieser Prozess besteht meist darin ein für vom Benutzer vorgegebene Leistungsmetrik(en) optimales Modell zu finden. Oft kann dieser Prozess durch Lernen aus vorhergehenden Experimenten verbessert oder beschleunigt werden. In dieser Arbeit werden drei solcher Methoden vorgestellt, die entweder darauf abzielen, eine feste Menge möglicher Hyperparameterkonfigurationen zu erhalten, die wahrscheinlich gute Lösungen für jeden neuen Datensatz enthalten, oder Eigenschaften der Datensätze zu nutzen, um neue Konfigurationen vorzuschlagen. Darüber hinaus wird eine Sammlung solcher erforderlichen Metadaten zu den Experimenten vorgestellt, und es wird gezeigt, wie solche Metadaten für die Entwicklung und als Testumgebung für neue Hyperparameter- Optimierungsmethoden verwendet werden können. Die weite Verbreitung von ML-Modellen in vielen Bereichen der Gesellschaft erfordert gleichzeitig eine genauere Untersuchung der Art und Weise, wie aus Modellen abgeleitete automatisierte Entscheidungen die Gesellschaft formen, und ob sie möglicherweise Individuen oder einzelne Bevölkerungsgruppen benachteiligen. In dieser Arbeit wird daher ein AutoML-Tool vorgestellt, das es ermöglicht, solche Überlegungen in die Suche nach einem optimalen Modell miteinzubeziehen. Diese Forderung nach Fairness wirft gleichzeitig die Frage auf, ob die Fairness eines Modells zuverlässig geschätzt werden kann, was in einem weiteren Beitrag in dieser Arbeit untersucht wird. Da der Zugang zu Methoden des maschinellen Lernens auch stark vom Zugang zu Software und Toolboxen abhängt, sind mehrere Beiträge in Form von Software Teil dieser Arbeit. Das R-Paket mlr3pipelines ermöglicht die Einbettung von Modellen in sogenan- nte Machine Learning Pipelines, die Vor- und Nachverarbeitungsschritte enthalten, die im maschinellen Lernen und AutoML häufig benötigt werden. Das mlr3fairness R-Paket hingegen ermöglicht es dem Benutzer, Modelle auf potentielle Benachteiligung hin zu über- prüfen und diese durch verschiedene Techniken zu reduzieren. Eine dieser Techniken, multi-calibration wurde darüberhinaus als seperate Software veröffentlicht.Machine learning artifacts are increasingly embedded in society, often in the form of automated decision-making processes. One major reason for this, along with methodological improvements, is the increasing accessibility of data but also machine learning toolkits that enable access to machine learning methodology for non-experts. The core focus of this thesis is exactly this – democratizing access to machine learning in order to enable a wider audience to benefit from its potential. Contributions in this manuscript stem from several different areas within this broader area. A major section is dedicated to the field of automated machine learning (AutoML) with the goal to abstract away the tedious task of obtaining an optimal predictive model for a given dataset. This process mostly consists of finding said optimal model, often through hyperparameter optimization, while the user in turn only selects the appropriate performance metric(s) and validates the resulting models. This process can be improved or sped up by learning from previous experiments. Three such methods one with the goal to obtain a fixed set of possible hyperparameter configurations that likely contain good solutions for any new dataset and two using dataset characteristics to propose new configurations are presented in this thesis. It furthermore presents a collection of required experiment metadata and how such meta-data can be used for the development and as a test bed for new hyperparameter optimization methods. The pervasion of models derived from ML in many aspects of society simultaneously calls for increased scrutiny with respect to how such models shape society and the eventual biases they exhibit. Therefore, this thesis presents an AutoML tool that allows incorporating fairness considerations into the search for an optimal model. This requirement for fairness simultaneously poses the question of whether we can reliably estimate a model’s fairness, which is studied in a further contribution in this thesis. Since access to machine learning methods also heavily depends on access to software and toolboxes, several contributions in the form of software are part of this thesis. The mlr3pipelines R package allows for embedding models in so-called machine learning pipelines that include pre- and postprocessing steps often required in machine learning and AutoML. The mlr3fairness R package on the other hand enables users to audit models for potential biases as well as reduce those biases through different debiasing techniques. One such technique, multi-calibration is published as a separate software package, mcboost

    Taxonomy of datasets in graph learning : a data-driven approach to improve GNN benchmarking

    Full text link
    The core research of this thesis, mostly comprising chapter four, has been accepted to the Learning on Graphs (LoG) 2022 conference for a spotlight presentation as a standalone paper, under the title "Taxonomy of Benchmarks in Graph Representation Learning", and is to be published in the Proceedings of Machine Learning Research (PMLR) series. As a main author of the paper, my specific contributions to this paper cover problem formulation, design and implementation of our taxonomy framework and experimental pipeline, collation of our results and of course the writing of the article.L'apprentissage profond sur les graphes a atteint des niveaux de succès sans précédent ces dernières années grâce aux réseaux de neurones de graphes (GNN), des architectures de réseaux de neurones spécialisées qui ont sans équivoque surpassé les approches antérieurs d'apprentissage définies sur des graphes. Les GNN étendent le succès des réseaux de neurones aux données structurées en graphes en tenant compte de leur géométrie intrinsèque. Bien que des recherches approfondies aient été effectuées sur le développement de GNN avec des performances supérieures à celles des modèles références d'apprentissage de représentation graphique, les procédures d'analyse comparative actuelles sont insuffisantes pour fournir des évaluations justes et efficaces des modèles GNN. Le problème peut-être le plus répandu et en même temps le moins compris en ce qui concerne l'analyse comparative des graphiques est la "couverture de domaine": malgré le nombre croissant d'ensembles de données graphiques disponibles, la plupart d'entre eux ne fournissent pas d'informations supplémentaires et au contraire renforcent les biais potentiellement nuisibles dans le développement d’un modèle GNN. Ce problème provient d'un manque de compréhension en ce qui concerne les aspects d'un modèle donné qui sont sondés par les ensembles de données de graphes. Par exemple, dans quelle mesure testent-ils la capacité d'un modèle à tirer parti de la structure du graphe par rapport aux fonctionnalités des nœuds? Ici, nous développons une approche fondée sur des principes pour taxonomiser les ensembles de données d'analyse comparative selon un "profil de sensibilité" qui est basé sur la quantité de changement de performance du GNN en raison d'une collection de perturbations graphiques. Notre analyse basée sur les données permet de mieux comprendre quelles caractéristiques des données de référence sont exploitées par les GNN. Par conséquent, notre taxonomie peut aider à la sélection et au développement de repères graphiques adéquats et à une évaluation mieux informée des futures méthodes GNN. Enfin, notre approche et notre implémentation dans le package GTaxoGym (https://github.com/G-Taxonomy-Workgroup/GTaxoGym) sont extensibles à plusieurs types de tâches de prédiction de graphes et à des futurs ensembles de données.Deep learning on graphs has attained unprecedented levels of success in recent years thanks to Graph Neural Networks (GNNs), specialized neural network architectures that have unequivocally surpassed prior graph learning approaches. GNNs extend the success of neural networks to graph-structured data by accounting for their intrinsic geometry. While extensive research has been done on developing GNNs with superior performance according to a collection of graph representation learning benchmarks, current benchmarking procedures are insufficient to provide fair and effective evaluations of GNN models. Perhaps the most prevalent and at the same time least understood problem with respect to graph benchmarking is "domain coverage": Despite the growing number of available graph datasets, most of them do not provide additional insights and on the contrary reinforce potentially harmful biases in GNN model development. This problem stems from a lack of understanding with respect to what aspects of a given model are probed by graph datasets. For example, to what extent do they test the ability of a model to leverage graph structure vs. node features? Here, we develop a principled approach to taxonomize benchmarking datasets according to a "sensitivity profile" that is based on how much GNN performance changes due to a collection of graph perturbations. Our data-driven analysis provides a deeper understanding of which benchmarking data characteristics are leveraged by GNNs. Consequently, our taxonomy can aid in selection and development of adequate graph benchmarks, and better informed evaluation of future GNN methods. Finally, our approach and implementation in the GTaxoGym package (https://github.com/G-Taxonomy-Workgroup/GTaxoGym) are extendable to multiple graph prediction task types and future datasets
    corecore