33 research outputs found

    Hybrid Speckle Noise Reduction Method for Abdominal Circumference Segmentation of Fetal Ultrasound Images

    Get PDF
    Fetal biometric size such as abdominal circumference (AC) is used to predict fetal weight or gestational age in ultrasound images. The automatic biometric measurement can improve efficiency in the ultrasonography examination workflow. The unclear boundaries of the abdomen image and the speckle noise presence are the challenges for the automated AC measurement techniques. The main problem to improve the accuracy of the automatic AC segmentation is how to remove noise while retaining the boundary features of objects. In this paper, we proposed a hybrid ultrasound image denoising framework which was a combination of spatial-based filtering method and multiresolution based method.  In this technique, an ultrasound image was decomposed into subbands using wavelet transform. A thresholding technique and the anisotropic diffusion method were applied to the detail subbands, at the same time the bilateral filtering modified the approximation subband. The proposed denoising approach had the best performance in the edge preservation level and could improve the accuracy of the abdominal circumference segmentation

    Blind Speckle Decorrelation for SAR Image Despeckling

    Get PDF
    In the past few decades, several methods have been developed for despeckling synthetic aperture radar (SAR) images. A considerable number of them have been derived under the assumption of a fully-developed speckle model in which the multiplicative speckle noise is supposed to be a white process. Unfortunately, the transfer function of SAR acquisition systems can introduce a statistical correlation, which decreases the despeckling efficiency of such filters. In this paper, a whitening method is proposed for processing a complex image acquired by a SAR system. We demonstrate that the proposed approach allows the successful application of classical despeckling algorithms. First, we perform an estimation of the SAR system frequency response based on some statistical properties of the acquired image and by using realistic assumptions. Then, a decorrelation process is applied on the acquired image, taking into account the presence of point targets. Finally, the image is despeckled. The experimental results show that the despeckling filters achieve better performance when they are preceded by the proposed whitening method; furthermore, the radiometric characteristics of the image are preserve

    Effective SAR image despeckling based on bandlet and SRAD

    Get PDF
    Despeckling of a SAR image without losing features of the image is a daring task as it is intrinsically affected by multiplicative noise called speckle. This thesis proposes a novel technique to efficiently despeckle SAR images. Using an SRAD filter, a Bandlet transform based filter and a Guided filter, the speckle noise in SAR images is removed without losing the features in it. Here a SAR image input is given parallel to both SRAD and Bandlet transform based filters. The SRAD filter despeckles the SAR image and the despeckled output image is used as a reference image for the guided filter. In the Bandlet transform based despeckling scheme, the input SAR image is first decomposed using the bandlet transform. Then the coefficients obtained are thresholded using a soft thresholding rule. All coefficients other than the low-frequency ones are so adjusted. The generalized cross-validation (GCV) technique is employed here to find the most favorable threshold for each subband. The bandlet transform is able to extract edges and fine features in the image because it finds the direction where the function gives maximum value and in the same direction it builds extended orthogonal vectors. Simple soft thresholding using an optimum threshold despeckles the input SAR image. The guided filter with the help of a reference image removes the remaining speckle from the bandlet transform output. In terms of numerical and visual quality, the proposed filtering scheme surpasses the available despeckling schemes

    SPECKLE NOISE REDUCTION USING ADAPTIVE MULTISCALE PRODUCTS THRESHOLDING

    Get PDF
    Image denoising is an essential preprocessing technique in image acquisition systems. For instance, in ultrasound (US) images, suppression of speckle noise while preserving the edges is highly preferred. Thus, in this paper denoising the speckle noise by using wavelet-based multiscale product thresholding approach is presented. The underlying principle of this technique is to apply dyadic wavelet transform and performs the multiscale products of the wavelet transform. Then, an adaptive threshold is calculated and applied to the multiscale products instead of applying it on wavelet coefficient. Thereafter, the performance of the proposed technique is compared with other denoising techniques such as Lee filter, boxcar filter, linear minimum mean square error (LMMSE) filter and median filter. The result shows that the proposed technique gives a better performance in terms of PNSR and ENL value by an average gain of 1.22 and 1.8 times the noisy on, respectively and can better preserved image detail

    Speckle Noise Reduction in Medical Ultrasound Images

    Get PDF
    Ultrasound imaging is an incontestable vital tool for diagnosis, it provides in non-invasive manner the internal structure of the body to detect eventually diseases or abnormalities tissues. Unfortunately, the presence of speckle noise in these images affects edges and fine details which limit the contrast resolution and make diagnostic more difficult. In this paper, we propose a denoising approach which combines logarithmic transformation and a non linear diffusion tensor. Since speckle noise is multiplicative and nonwhite process, the logarithmic transformation is a reasonable choice to convert signaldependent or pure multiplicative noise to an additive one. The key idea from using diffusion tensor is to adapt the flow diffusion towards the local orientation by applying anisotropic diffusion along the coherent structure direction of interesting features in the image. To illustrate the effective performance of our algorithm, we present some experimental results on synthetically and real echographic images

    Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis

    Get PDF
    There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE−/− mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p<0.05). When the 11 optimal features were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93% specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%, respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of atherosclerosis.Lili Niu, Ming Qian, Wei Yang, Long Meng, Yang Xiao, Kelvin K. L. Wong, Derek Abbott, Xin Liu, Hairong Zhen

    Multi-level fusion in ultrasound for cancer detection based on uniform LBP features

    Get PDF
    Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging. Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise, an enhanced technique is not achieved. The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern (LBP) and filtered noise reduction. To surmount the above limitations and achieve the aim of the study, a new descriptor that enhances the LBP features based on the new threshold has been proposed. This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer, which was attained in two stages. First, several images were generated from a single image using the pre-processing method. The median and Wiener filters were utilized to lessen the speckle noise and enhance the ultrasound image texture. This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes. Second, the fusion mechanism allowed the production of diverse features from different filtered images. The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated. The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images, respectively. The proposed method achieved very high accuracy (98%), sensitivity (98%), and specificity (99%). As a result, the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy, sensitivity, and specificity

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques
    corecore