5 research outputs found

    Wavelet and FFT Based Image Denoising Using Non-linear Filters

    Get PDF
    We propose a stationary and discrete wavelet based image denoising scheme and an FFTbased image denoising scheme to remove Gaussian noise. In the first approach, high subbands are added with each other and then soft thresholding is performed. The sum of low subbands is filtered with either piecewise linear (PWL) or Lagrange or spline interpolated PWL filter. In the second approach, FFT is employed on the noisy image and then low frequency and high frequency coefficients are separated with a specified cutoff frequency.Then the inverse of low frequency components is filtered with one of the PWL filters and the inverse of high frequency components is filtered with soft thresholding. The experimental results are compared with Liu and Liu's tensor-based diffusion model (TDM) approach

    A Multiplicative iterative algorithm for box-constrained penalized likelihood image restoration

    No full text
    Image restoration is a computationally intensive problem as a large number of pixel values have to be determined. Since the pixel values of digital images can attain only a finite number of values (e.g., 8-bit images can have only 256 gray levels), one would like to recover an image within some dynamic range. This leads to the imposition of box constraints on the pixel values. The traditional gradient projection methods for constrained optimization can be used to impose box constraints, but they may suffer from either slow convergence or repeated searching for active sets in each iteration. In this paper, we develop a new box-constrained multiplicative iterative (BCMI) algorithm for box-constrained image restoration. The BCMI algorithm just requires pixelwise updates in each iteration, and there is no need to invert any matrices. We give the convergence proof of this algorithm and apply it to total variation image restoration problems, where the observed blurry images contain Poisson, Gaussian, or salt-and-pepper noises.14 page(s
    corecore