1,293 research outputs found

    FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Get PDF
    Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.published_or_final_versio

    Towards a Scalable Hardware/Software Co-Design Platform for Real-time Pedestrian Tracking Based on a ZYNQ-7000 Device

    Get PDF
    Currently, most designers face a daunting task to research different design flows and learn the intricacies of specific software from various manufacturers in hardware/software co-design. An urgent need of creating a scalable hardware/software co-design platform has become a key strategic element for developing hardware/software integrated systems. In this paper, we propose a new design flow for building a scalable co-design platform on FPGA-based system-on-chip. We employ an integrated approach to implement a histogram oriented gradients (HOG) and a support vector machine (SVM) classification on a programmable device for pedestrian tracking. Not only was hardware resource analysis reported, but the precision and success rates of pedestrian tracking on nine open access image data sets are also analysed. Finally, our proposed design flow can be used for any real-time image processingrelated products on programmable ZYNQ-based embedded systems, which benefits from a reduced design time and provide a scalable solution for embedded image processing products

    A novel parallel algorithm for surface editing and its FPGA implementation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophySurface modelling and editing is one of important subjects in computer graphics. Decades of research in computer graphics has been carried out on both low-level, hardware-related algorithms and high-level, abstract software. Success of computer graphics has been seen in many application areas, such as multimedia, visualisation, virtual reality and the Internet. However, the hardware realisation of OpenGL architecture based on FPGA (field programmable gate array) is beyond the scope of most of computer graphics researches. It is an uncultivated research area where the OpenGL pipeline, from hardware through the whole embedded system (ES) up to applications, is implemented in an FPGA chip. This research proposes a hybrid approach to investigating both software and hardware methods. It aims at bridging the gap between methods of software and hardware, and enhancing the overall performance for computer graphics. It consists of four parts, the construction of an FPGA-based ES, Mesa-OpenGL implementation for FPGA-based ESs, parallel processing, and a novel algorithm for surface modelling and editing. The FPGA-based ES is built up. In addition to the Nios II soft processor and DDR SDRAM memory, it consists of the LCD display device, frame buffers, video pipeline, and algorithm-specified module to support the graphics processing. Since there is no implementation of OpenGL ES available for FPGA-based ESs, a specific OpenGL implementation based on Mesa is carried out. Because of the limited FPGA resources, the implementation adopts the fixed-point arithmetic, which can offer faster computing and lower storage than the floating point arithmetic, and the accuracy satisfying the needs of 3D rendering. Moreover, the implementation includes Bézier-spline curve and surface algorithms to support surface modelling and editing. The pipelined parallelism and co-processors are used to accelerate graphics processing in this research. These two parallelism methods extend the traditional computation parallelism in fine-grained parallel tasks in the FPGA-base ESs. The novel algorithm for surface modelling and editing, called Progressive and Mixing Algorithm (PAMA), is proposed and implemented on FPGA-based ES’s. Compared with two main surface editing methods, subdivision and deformation, the PAMA can eliminate the large storage requirement and computing cost of intermediated processes. With four independent shape parameters, the PAMA can be used to model and edit freely the shape of an open or closed surface that keeps globally the zero-order geometric continuity. The PAMA can be applied independently not only FPGA-based ESs but also other platforms. With the parallel processing, small size, and low costs of computing, storage and power, the FPGA-based ES provides an effective hybrid solution to surface modelling and editing

    Parallel Computation of Nonrigid Image Registration

    Get PDF
    Automatic intensity-based nonrigid image registration brings significant impact in medical applications such as multimodality fusion of images, serial comparison for monitoring disease progression or regression, and minimally invasive image-guided interventions. However, due to memory and compute intensive nature of the operations, intensity-based image registration has remained too slow to be practical for clinical adoption, with its use limited primarily to as a pre-operative too. Efficient registration methods can lead to new possibilities for development of improved and interactive intraoperative tools and capabilities. In this thesis, we propose an efficient parallel implementation for intensity-based three-dimensional nonrigid image registration on a commodity graphics processing unit. Optimization techniques are developed to accelerate the compute-intensive mutual information computation. The study is performed on the hierarchical volume subdivision-based algorithm, which is inherently faster than other nonrigid registration algorithms and structurally well-suited for data-parallel computation platforms. The proposed implementation achieves more than 50-fold runtime improvement over a standard implementation on a CPU. The execution time of nonrigid image registration is reduced from hours to minutes while retaining the same level of registration accuracy

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Towards Real-time Remote Processing of Laparoscopic Video

    Get PDF
    Laparoscopic surgery is a minimally invasive technique where surgeons insert a small video camera into the patient\u27s body to visualize internal organs and use small tools to perform these procedures. However, the benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic system is the daVinci-si robotic surgical vision system. The video streams generate approximately 360 megabytes of data per second, demonstrating a trend toward increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Real-time processing this large stream of data on a bedside PC, single or dual node setup, may be challenging and a high-performance computing (HPC) environment is not typically available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate (fps), it is required that each 11.9 MB (1080p) video frame be processed by a server and returned within the time this frame is displayed or 1/30th of a second. The ability to acquire, process, and visualize data in real time is essential for the performance of complex tasks as well as minimizing risk to the patient. We have implemented and compared performance of compression, segmentation and registration algorithms on Clemson\u27s Palmetto supercomputer using dual Nvidia graphics processing units (GPUs) per node and compute unified device architecture (CUDA) programming model. We developed three separate applications that run simultaneously: video acquisition, image processing, and video display. The image processing application allows several algorithms to run simultaneously on different cluster nodes and transfer images through message passing interface (MPI). Our segmentation and registration algorithms resulted in an acceleration factor of around 2 and 8 times respectively. To achieve a higher frame rate, we also resized images and reduced the overall processing time. As a result, using high-speed network to access computing clusters with GPUs to implement these algorithms in parallel will improve surgical procedures by providing real-time medical image processing and laparoscopic data

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Design of a High-Speed Architecture for Stabilization of Video Captured Under Non-Uniform Lighting Conditions

    Get PDF
    Video captured in shaky conditions may lead to vibrations. A robust algorithm to immobilize the video by compensating for the vibrations from physical settings of the camera is presented in this dissertation. A very high performance hardware architecture on Field Programmable Gate Array (FPGA) technology is also developed for the implementation of the stabilization system. Stabilization of video sequences captured under non-uniform lighting conditions begins with a nonlinear enhancement process. This improves the visibility of the scene captured from physical sensing devices which have limited dynamic range. This physical limitation causes the saturated region of the image to shadow out the rest of the scene. It is therefore desirable to bring back a more uniform scene which eliminates the shadows to a certain extent. Stabilization of video requires the estimation of global motion parameters. By obtaining reliable background motion, the video can be spatially transformed to the reference sequence thereby eliminating the unintended motion of the camera. A reflectance-illuminance model for video enhancement is used in this research work to improve the visibility and quality of the scene. With fast color space conversion, the computational complexity is reduced to a minimum. The basic video stabilization model is formulated and configured for hardware implementation. Such a model involves evaluation of reliable features for tracking, motion estimation, and affine transformation to map the display coordinates of a stabilized sequence. The multiplications, divisions and exponentiations are replaced by simple arithmetic and logic operations using improved log-domain computations in the hardware modules. On Xilinx\u27s Virtex II 2V8000-5 FPGA platform, the prototype system consumes 59% logic slices, 30% flip-flops, 34% lookup tables, 35% embedded RAMs and two ZBT frame buffers. The system is capable of rendering 180.9 million pixels per second (mpps) and consumes approximately 30.6 watts of power at 1.5 volts. With a 1024Ă—1024 frame, the throughput is equivalent to 172 frames per second (fps). Future work will optimize the performance-resource trade-off to meet the specific needs of the applications. It further extends the model for extraction and tracking of moving objects as our model inherently encapsulates the attributes of spatial distortion and motion prediction to reduce complexity. With these parameters to narrow down the processing range, it is possible to achieve a minimum of 20 fps on desktop computers with Intel Core 2 Duo or Quad Core CPUs and 2GB DDR2 memory without a dedicated hardware
    • …
    corecore