2 research outputs found

    A Linear Algebraic Framework for Autofocus in Synthetic Aperture Radar

    Full text link
    Synthetic aperture radar (SAR) provides a means of producing high-resolution microwave images using an antenna of small size. SAR images have wide applications in surveillance, remote sensing, and mapping of the surfaces of both the Earth and other planets. The defining characteristic of SAR is its coherent processing of data collected by an antenna at locations along a trajectory in space. In principle, we can produce an image of extraordinary resolution. However, imprecise position measurements associated with data collected at each location cause phase errors that, in turn, cause the reconstructed image to suffer distortion, sometimes so severe that the image is completely unrecognizable. Autofocus algorithms apply signal processing techniques to restore the focused image. This thesis focuses on the study of the SAR autofocus problem from a linear algebraic perspective. We first propose a general autofocus algorithm, called Fourier-domain Multichannel Autofocus (FMCA), that is developed based on an image support constraint. FMCA can accommodate nearly any SAR imaging scenario, whether it be wide-angle or bistatic (transmit and receive antennas at separate locations). The performance of FMCA is shown to be superior compared to current state-of-the-art autofocus techniques. Next, we recognize that at the heart of many autofocus algorithms is an optimization problem, referred to as a constant modulus quadratic program (CMQP). Currently, CMQP generally is solved by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing applications. Preliminary results show that the new method provides promising performance advantages at the expense of increasing computational cost. Lastly, we propose a novel autofocus algorithm based on maximum likelihood estimation, called maximum likelihood autofocus (MLA). The main advantage of MLA is its reliance on a rigorous statistical model rather than on somewhat heuristic reverse engineering arguments. We show both the analytical and experimental advantages of MLA over existing autofocus methods.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86443/1/khliu_1.pd
    corecore