10 research outputs found

    A Multidelay Double-Talk Detector Combined with the MDF Adaptive Filter

    Get PDF
    The multidelay block frequency-domain (MDF) adaptive filter is an excellent candidate for both acoustic and network echo cancellation. There is a need for a very good double-talk detector (DTD) to be combined efficiently with the MDF algorithm. Recently, a DTD based on a normalized cross-correlation vector was proposed and it was shown that this DTD performs much better than the Geigel algorithm and other DTDs based on the cross-correlation coefficient. In this paper, we show how to extend the definition of a normalized cross-correlation vector in the frequency domain for the general case where the block size of the Fourier transform is smaller than the length of the adaptive filter. The resulting DTD has an MDF structure, which makes it easy to implement, and a good fit with an echo canceler based on the MDF algorithm. We also analyze resource requirements (computational complexity and memory requirement) and compare the MDF algorithm with the normalized least mean square algorithm (NLMS) from this point of view.</p

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    Sparseness-controlled adaptive algorithms for supervised and unsupervised system identification

    No full text
    In single-channel hands-free telephony, the acoustic coupling between the loudspeaker and the microphone can be strong and this generates echoes that can degrade user experience. Therefore, effective acoustic echo cancellation (AEC) is necessary to maintain a stable system and hence improve the perceived voice quality of a call. Traditionally, adaptive filters have been deployed in acoustic echo cancellers to estimate the acoustic impulse responses (AIRs) using adaptive algorithms. The performances of a range of well-known algorithms are studied in the context of both AEC and network echo cancellation (NEC). It presents insights into their tracking performances under both time-invariant and time-varying system conditions. In the context of AEC, the level of sparseness in AIRs can vary greatly in a mobile environment. When the response is strongly sparse, convergence of conventional approaches is poor. Drawing on techniques originally developed for NEC, a class of time-domain and a frequency-domain AEC algorithms are proposed that can not only work well in both sparse and dispersive circumstances, but also adapt dynamically to the level of sparseness using a new sparseness-controlled approach. As it will be shown later that the early part of the acoustic echo path is sparse while the late reverberant part of the acoustic path is dispersive, a novel approach to an adaptive filter structure that consists of two time-domain partition blocks is proposed such that different adaptive algorithms can be used for each part. By properly controlling the mixing parameter for the partitioned blocks separately, where the block lengths are controlled adaptively, the proposed partitioned block algorithm works well in both sparse and dispersive time-varying circumstances. A new insight into an analysis on the tracking performance of improved proportionate NLMS (IPNLMS) is presented by deriving the expression for the mean-square error. By employing the framework for both sparse and dispersive time-varying echo paths, this work validates the analytic results in practical simulations for AEC. The time-domain second-order statistic based blind SIMO identification algorithms, which exploit the cross relation method, are investigated and then a technique with proportionate step-size control for both sparse and dispersive system identification is also developed

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M

    Objective and Subjective Evaluation of Wideband Speech Quality

    Get PDF
    Traditional landline and cellular communications use a bandwidth of 300 - 3400 Hz for transmitting speech. This narrow bandwidth impacts quality, intelligibility and naturalness of transmitted speech. There is an impending change within the telecommunication industry towards using wider bandwidth speech, but the enlarged bandwidth also introduces a few challenges in speech processing. Echo and noise are two challenging issues in wideband telephony, due to increased perceptual sensitivity by users. Subjective and/or objective measurements of speech quality are important in benchmarking speech processing algorithms and evaluating the effect of parameters like noise, echo, and delay in wideband telephony. Subjective measures include ratings of speech quality by listeners, whereas objective measures compute a metric based on the reference and degraded speech samples. While subjective quality ratings are the gold - standard\u27\u27, they are also time- and resource- consuming. An objective metric that correlates highly with subjective data is attractive, as it can act as a substitute for subjective quality scores in gauging the performance of different algorithms and devices. This thesis reports results from a series of experiments on subjective and objective speech quality evaluation for wideband telephony applications. First, a custom wideband noise reduction database was created that contained speech samples corrupted by different background noises at different signal to noise ratios (SNRs) and processed by six different noise reduction algorithms. Comprehensive subjective evaluation of this database revealed an interaction between the algorithm performance, noise type and SNR. Several auditory-based objective metrics such as the Loudness Pattern Distortion (LPD) measure based on the Moore - Glasberg auditory model were evaluated in predicting the subjective scores. In addition, the performance of Bayesian Multivariate Regression Splines(BMLS) was also evaluated in terms of mapping the scores calculated by the objective metrics to the true quality scores. The combination of LPD and BMLS resulted in high correlation with the subjective scores and was used as a substitution for fine - tuning the noise reduction algorithms. Second, the effect of echo and delay on the wideband speech was evaluated in both listening and conversational context, through both subjective and objective measures. A database containing speech samples corrupted by echo with different delay and frequency response characteristics was created, and was later used to collect subjective quality ratings. The LPD - BMLS objective metric was then validated using the subjective scores. Third, to evaluate the effect of echo and delay in conversational context, a realtime simulator was developed. Pairs of subjects conversed over the simulated system and rated the quality of their conversations which were degraded by different amount of echo and delay. The quality scores were analysed and LPD+BMLS combination was found to be effective in predicting subjective impressions of quality for condition-averaged data

    A Multidelay Double-Talk Detector Combined with the MDF Adaptive Filter

    No full text
    corecore