1,472 research outputs found

    A Multichannel Spatial Compressed Sensing Approach for Direction of Arrival Estimation

    Get PDF
    The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-15995-4_57ESPRC Leadership Fellowship EP/G007144/1EPSRC Platform Grant EP/045235/1EU FET-Open Project FP7-ICT-225913\"SMALL

    On the Sample Complexity of Multichannel Frequency Estimation via Convex Optimization

    Full text link
    The use of multichannel data in line spectral estimation (or frequency estimation) is common for improving the estimation accuracy in array processing, structural health monitoring, wireless communications, and more. Recently proposed atomic norm methods have attracted considerable attention due to their provable superiority in accuracy, flexibility and robustness compared with conventional approaches. In this paper, we analyze atomic norm minimization for multichannel frequency estimation from noiseless compressive data, showing that the sample size per channel that ensures exact estimation decreases with the increase of the number of channels under mild conditions. In particular, given LL channels, order K(logK)(1+1LlogN)K\left(\log K\right) \left(1+\frac{1}{L}\log N\right) samples per channel, selected randomly from NN equispaced samples, suffice to ensure with high probability exact estimation of KK frequencies that are normalized and mutually separated by at least 4N\frac{4}{N}. Numerical results are provided corroborating our analysis.Comment: 14 pages, double column, to appear in IEEE Trans. Information Theor

    Nonparametric Simultaneous Sparse Recovery: an Application to Source Localization

    Full text link
    We consider multichannel sparse recovery problem where the objective is to find good recovery of jointly sparse unknown signal vectors from the given multiple measurement vectors which are different linear combinations of the same known elementary vectors. Many popular greedy or convex algorithms perform poorly under non-Gaussian heavy-tailed noise conditions or in the face of outliers. In this paper, we propose the usage of mixed p,q\ell_{p,q} norms on data fidelity (residual matrix) term and the conventional 0,2\ell_{0,2}-norm constraint on the signal matrix to promote row-sparsity. We devise a greedy pursuit algorithm based on simultaneous normalized iterative hard thresholding (SNIHT) algorithm. Simulation studies highlight the effectiveness of the proposed approaches to cope with different noise environments (i.i.d., row i.i.d, etc) and outliers. Usefulness of the methods are illustrated in source localization application with sensor arrays.Comment: Paper appears in Proc. European Signal Processing Conference (EUSIPCO'15), Nice, France, Aug 31 -- Sep 4, 201

    Time Delay Estimation from Low Rate Samples: A Union of Subspaces Approach

    Full text link
    Time delay estimation arises in many applications in which a multipath medium has to be identified from pulses transmitted through the channel. Various approaches have been proposed in the literature to identify time delays introduced by multipath environments. However, these methods either operate on the analog received signal, or require high sampling rates in order to achieve reasonable time resolution. In this paper, our goal is to develop a unified approach to time delay estimation from low rate samples of the output of a multipath channel. Our methods result in perfect recovery of the multipath delays from samples of the channel output at the lowest possible rate, even in the presence of overlapping transmitted pulses. This rate depends only on the number of multipath components and the transmission rate, but not on the bandwidth of the probing signal. In addition, our development allows for a variety of different sampling methods. By properly manipulating the low-rate samples, we show that the time delays can be recovered using the well-known ESPRIT algorithm. Combining results from sampling theory with those obtained in the context of direction of arrival estimation methods, we develop necessary and sufficient conditions on the transmitted pulse and the sampling functions in order to ensure perfect recovery of the channel parameters at the minimal possible rate. Our results can be viewed in a broader context, as a sampling theorem for analog signals defined over an infinite union of subspaces

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Subspace Methods for Joint Sparse Recovery

    Full text link
    We propose robust and efficient algorithms for the joint sparse recovery problem in compressed sensing, which simultaneously recover the supports of jointly sparse signals from their multiple measurement vectors obtained through a common sensing matrix. In a favorable situation, the unknown matrix, which consists of the jointly sparse signals, has linearly independent nonzero rows. In this case, the MUSIC (MUltiple SIgnal Classification) algorithm, originally proposed by Schmidt for the direction of arrival problem in sensor array processing and later proposed and analyzed for joint sparse recovery by Feng and Bresler, provides a guarantee with the minimum number of measurements. We focus instead on the unfavorable but practically significant case of rank-defect or ill-conditioning. This situation arises with limited number of measurement vectors, or with highly correlated signal components. In this case MUSIC fails, and in practice none of the existing methods can consistently approach the fundamental limit. We propose subspace-augmented MUSIC (SA-MUSIC), which improves on MUSIC so that the support is reliably recovered under such unfavorable conditions. Combined with subspace-based greedy algorithms also proposed and analyzed in this paper, SA-MUSIC provides a computationally efficient algorithm with a performance guarantee. The performance guarantees are given in terms of a version of restricted isometry property. In particular, we also present a non-asymptotic perturbation analysis of the signal subspace estimation that has been missing in the previous study of MUSIC.Comment: submitted to IEEE transactions on Information Theory, revised versio

    New Entries to the SPL EDICS for Audio and Acoustic Signal Processing

    Get PDF
    corecore