2,070 research outputs found

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Artificial intelligence-based recurrence prediction outperforms classical histopathological methods in pulmonary adenocarcinoma biopsies

    Get PDF
    Introduction: Between 10 and 50% of early-stage lung adenocarcinoma patients experience local or distant recurrence. Histological parameters such as a solid or micropapillary growth pattern are well-described risk factors for recurrence. However, not every patient presenting with such a pattern will develop recurrence. Designing a model which can more accurately predict recurrence on small biopsy samples can aid the stratification of patients for surgery, (neo-)adjuvant therapy, and follow-up. Material and Methods: In this study, a statistical model on biopsies fed with histological data from early and advanced-stage lung adenocarcinomas was developed to predict recurrence after surgical resection. Additionally, a convolutional neural network (CNN)-based artificial intelligence (AI) classification model, named AI-based Lung Adenocarcinoma Recurrence Predictor (AILARP), was trained to predict recurrence, with an ImageNet pre-trained EfficientNet that was fine-tuned on lung adenocarcinoma biopsies using transfer learning. Both models were validated using the same biopsy dataset to ensure that an accurate comparison was demonstrated. Results: The statistical model had an accuracy of 0.49 for all patients when using histology data only. The AI classification model yielded a test accuracy of 0.70 and 0.82 and an area under the curve (AUC) of 0.74 and 0.87 on patch-wise and patient-wise hematoxylin and eosin (H&amp;E) stained whole slide images (WSIs), respectively. Conclusion: AI classification outperformed the traditional clinical approach for recurrence prediction on biopsies by a fair margin. The AI classifier may stratify patients according to their recurrence risk, based only on small biopsies. This model warrants validation in a larger lung biopsy cohort.</p

    Self-supervised learning in non-small cell lung cancer discovers novel morphological clusters linked to patient outcome and molecular phenotypes

    Full text link
    Histopathological images provide the definitive source of cancer diagnosis, containing information used by pathologists to identify and subclassify malignant disease, and to guide therapeutic choices. These images contain vast amounts of information, much of which is currently unavailable to human interpretation. Supervised deep learning approaches have been powerful for classification tasks, but they are inherently limited by the cost and quality of annotations. Therefore, we developed Histomorphological Phenotype Learning, an unsupervised methodology, which requires no annotations and operates via the self-discovery of discriminatory image features in small image tiles. Tiles are grouped into morphologically similar clusters which appear to represent recurrent modes of tumor growth emerging under natural selection. These clusters have distinct features which can be identified using orthogonal methods. Applied to lung cancer tissues, we show that they align closely with patient outcomes, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype

    Towards a Visual-Language Foundation Model for Computational Pathology

    Full text link
    The accelerated adoption of digital pathology and advances in deep learning have enabled the development of powerful models for various pathology tasks across a diverse array of diseases and patient cohorts. However, model training is often difficult due to label scarcity in the medical domain and the model's usage is limited by the specific task and disease for which it is trained. Additionally, most models in histopathology leverage only image data, a stark contrast to how humans teach each other and reason about histopathologic entities. We introduce CONtrastive learning from Captions for Histopathology (CONCH), a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and notably over 1.17 million image-caption pairs via task-agnostic pretraining. Evaluated on a suite of 13 diverse benchmarks, CONCH can be transferred to a wide range of downstream tasks involving either or both histopathology images and text, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval. CONCH represents a substantial leap over concurrent visual-language pretrained systems for histopathology, with the potential to directly facilitate a wide array of machine learning-based workflows requiring minimal or no further supervised fine-tuning

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    • …
    corecore