18,471 research outputs found

    Multi-modal Approach for Affective Computing

    Full text link
    Throughout the past decade, many studies have classified human emotions using only a single sensing modality such as face video, electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response (GSR), etc. The results of these studies are constrained by the limitations of these modalities such as the absence of physiological biomarkers in the face-video analysis, poor spatial resolution in EEG, poor temporal resolution of the GSR etc. Scant research has been conducted to compare the merits of these modalities and understand how to best use them individually and jointly. Using multi-modal AMIGOS dataset, this study compares the performance of human emotion classification using multiple computational approaches applied to face videos and various bio-sensing modalities. Using a novel method for compensating physiological baseline we show an increase in the classification accuracy of various approaches that we use. Finally, we present a multi-modal emotion-classification approach in the domain of affective computing research.Comment: Published in IEEE 40th International Engineering in Medicine and Biology Conference (EMBC) 201

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure
    • …
    corecore