4 research outputs found

    Person Search in Videos with One Portrait Through Visual and Temporal Links

    Full text link
    In real-world applications, e.g. law enforcement and video retrieval, one often needs to search a certain person in long videos with just one portrait. This is much more challenging than the conventional settings for person re-identification, as the search may need to be carried out in the environments different from where the portrait was taken. In this paper, we aim to tackle this challenge and propose a novel framework, which takes into account the identity invariance along a tracklet, thus allowing person identities to be propagated via both the visual and the temporal links. We also develop a novel scheme called Progressive Propagation via Competitive Consensus, which significantly improves the reliability of the propagation process. To promote the study of person search, we construct a large-scale benchmark, which contains 127K manually annotated tracklets from 192 movies. Experiments show that our approach remarkably outperforms mainstream person re-id methods, raising the mAP from 42.16% to 62.27%.Comment: European Conference on Computer Vision (ECCV), 201

    WIDER Face and Pedestrian Challenge 2018: Methods and Results

    Full text link
    This paper presents a review of the 2018 WIDER Challenge on Face and Pedestrian. The challenge focuses on the problem of precise localization of human faces and bodies, and accurate association of identities. It comprises of three tracks: (i) WIDER Face which aims at soliciting new approaches to advance the state-of-the-art in face detection, (ii) WIDER Pedestrian which aims to find effective and efficient approaches to address the problem of pedestrian detection in unconstrained environments, and (iii) WIDER Person Search which presents an exciting challenge of searching persons across 192 movies. In total, 73 teams made valid submissions to the challenge tracks. We summarize the winning solutions for all three tracks. and present discussions on open problems and potential research directions in these topics.Comment: Report of ECCV 2018 workshop: WIDER Face and Pedestrian Challeng

    Person Recognition in Personal Photo Collections

    Full text link
    People nowadays share large parts of their personal lives through social media. Being able to automatically recognise people in personal photos may greatly enhance user convenience by easing photo album organisation. For human identification task, however, traditional focus of computer vision has been face recognition and pedestrian re-identification. Person recognition in social media photos sets new challenges for computer vision, including non-cooperative subjects (e.g. backward viewpoints, unusual poses) and great changes in appearance. To tackle this problem, we build a simple person recognition framework that leverages convnet features from multiple image regions (head, body, etc.). We propose new recognition scenarios that focus on the time and appearance gap between training and testing samples. We present an in-depth analysis of the importance of different features according to time and viewpoint generalisability. In the process, we verify that our simple approach achieves the state of the art result on the PIPA benchmark, arguably the largest social media based benchmark for person recognition to date with diverse poses, viewpoints, social groups, and events. Compared the conference version of the paper, this paper additionally presents (1) analysis of a face recogniser (DeepID2+), (2) new method naeil2 that combines the conference version method naeil and DeepID2+ to achieve state of the art results even compared to post-conference works, (3) discussion of related work since the conference version, (4) additional analysis including the head viewpoint-wise breakdown of performance, and (5) results on the open-world setup.Comment: 18 pages, 20 figures; to appear in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    A Comprehensive Overview of Biometric Fusion

    Full text link
    The performance of a biometric system that relies on a single biometric modality (e.g., fingerprints only) is often stymied by various factors such as poor data quality or limited scalability. Multibiometric systems utilize the principle of fusion to combine information from multiple sources in order to improve recognition accuracy whilst addressing some of the limitations of single-biometric systems. The past two decades have witnessed the development of a large number of biometric fusion schemes. This paper presents an overview of biometric fusion with specific focus on three questions: what to fuse, when to fuse, and how to fuse. A comprehensive review of techniques incorporating ancillary information in the biometric recognition pipeline is also presented. In this regard, the following topics are discussed: (i) incorporating data quality in the biometric recognition pipeline; (ii) combining soft biometric attributes with primary biometric identifiers; (iii) utilizing contextual information to improve biometric recognition accuracy; and (iv) performing continuous authentication using ancillary information. In addition, the use of information fusion principles for presentation attack detection and multibiometric cryptosystems is also discussed. Finally, some of the research challenges in biometric fusion are enumerated. The purpose of this article is to provide readers a comprehensive overview of the role of information fusion in biometrics.Comment: Accepted for publication in Information Fusio
    corecore