8,154 research outputs found

    Efficient Decision Trees for Multi-class Support Vector Machines Using Entropy and Generalization Error Estimation

    Full text link
    We propose new methods for Support Vector Machines (SVMs) using tree architecture for multi-class classi- fication. In each node of the tree, we select an appropriate binary classifier using entropy and generalization error estimation, then group the examples into positive and negative classes based on the selected classi- fier and train a new classifier for use in the classification phase. The proposed methods can work in time complexity between O(log2N) to O(N) where N is the number of classes. We compared the performance of our proposed methods to the traditional techniques on the UCI machine learning repository using 10-fold cross-validation. The experimental results show that our proposed methods are very useful for the problems that need fast classification time or problems with a large number of classes as the proposed methods run much faster than the traditional techniques but still provide comparable accuracy

    Role of Class-specific Features in Various Classification Frameworks for Human Epithelial (HEp-2) Cell Images

    Full text link
    The antinuclear antibody detection with human epithelial cells is a popular approach for autoimmune diseases diagnosis. The manual evaluation demands time, effort and capital, and automation in screening can greatly aid the physicians in these respects. In this work, we employ simple, efficient and visually more interpretable, class-specific features which defined based on the visual characteristics of each class. We believe that defining features with a good visual interpretation, is indeed important in a scenario, where such an approach is used in an interactive CAD system for pathologists. Considering that problem consists of few classes, and our rather simplistic feature definitions, frameworks can be structured as hierarchies of various binary classifiers. These variants include frameworks which are earlier explored and some which are not explored for this task. We perform various experiments which include traditional texture features and demonstrate the effectiveness of class-specific features in various frameworks. We make insightful comparisons between different types of classification frameworks given their silent aspects and pros and cons over each other. We also demonstrate an experiment with only intermediates samples for testing. The proposed work yields encouraging results with respect to the state-of-the-art and highlights the role of class-specific features in different classification frameworks

    Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces

    Full text link
    Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural network, random vector functional link network and oblique decision trees. Random Vector Functional Link Network has an elegant closed form solution with extremely short training time. The neural network partitions each training bag (obtained using bagging) at the root level into C subsets where C is the number of classes in the dataset and subsequently, C oblique decision trees are trained on such partitions. The proposed method provides a rich insight into the data by grouping the confusing or hard to classify samples for each class and thus, provides an opportunity to employ fine-grained classification rule over the data. The performance of the ensemble classifier is evaluated on several multi-class datasets where it demonstrates a superior performance compared to other state-of- the-art classifiers.Comment: 8 pages, 5 figure

    A Linear-complexity Multi-biometric Forensic Document Analysis System, by Fusing the Stylome and Signature Modalities

    Full text link
    Forensic Document Analysis (FDA) addresses the problem of finding the authorship of a given document. Identification of the document writer via a number of its modalities (e.g. handwriting, signature, linguistic writing style (i.e. stylome), etc.) has been studied in the FDA state-of-the-art. But, no research is conducted on the fusion of stylome and signature modalities. In this paper, we propose such a bimodal FDA system (which has vast applications in judicial, police-related, and historical documents analysis) with a focus on time-complexity. The proposed bimodal system can be trained and tested with linear time complexity. For this purpose, we first revisit Multinomial Na\"ive Bayes (MNB), as the best state-of-the-art linear-complexity authorship attribution system and, then, prove its superior accuracy to the well-known linear-complexity classifiers in the state-of-the-art. Then, we propose a fuzzy version of MNB for being fused with a state-of-the-art well-known linear-complexity fuzzy signature recognition system. For the evaluation purposes, we construct a chimeric dataset, composed of signatures and textual contents of different letters. Despite its linear-complexity, the proposed multi-biometric system is proven to meaningfully improve its state-of-the-art unimodal counterparts, regarding the accuracy, F-Score, Detection Error Trade-off (DET), Cumulative Match Characteristics (CMC), and Match Score Histograms (MSH) evaluation metrics

    Building an Effective Intrusion Detection System using Unsupervised Feature Selection in Multi-objective Optimization Framework

    Full text link
    Intrusion Detection Systems (IDS) are developed to protect the network by detecting the attack. The current paper proposes an unsupervised feature selection technique for analyzing the network data. The search capability of the non-dominated sorting genetic algorithm (NSGA-II) has been employed for optimizing three different objective functions utilizing different information theoretic measures including mutual information, standard deviation, and information gain to identify mutually exclusive and a high variant subset of features. Finally, the Pareto optimal front of the different optimal feature subsets are obtained and these feature subsets are utilized for developing classification systems using different popular machine learning models like support vector machines, decision trees and k-nearest neighbour (k=5) classifier etc. We have evaluated the results of the algorithm on KDD-99, NSL-KDD and Kyoto 2006+ datasets. The experimental results on KDD-99 dataset show that decision tree provides better results than other available classifiers. The proposed system obtains the best results of 99.78% accuracy, 99.27% detection rate and false alarm rate of 0.2%, which are better than all the previous results for KDD dataset. We achieved an accuracy of 99.83% for 20% testing data of NSL-KDD dataset and 99.65% accuracy for 10-fold cross-validation on Kyoto dataset. The most attractive characteristic of the proposed scheme is that during the selection of appropriate feature subset, no labeled information is utilized and different feature quality measures are optimized simultaneously using the multi-objective optimization framework.Comment: 3 figure

    A New Approach in Persian Handwritten Letters Recognition Using Error Correcting Output Coding

    Full text link
    Classification Ensemble, which uses the weighed polling of outputs, is the art of combining a set of basic classifiers for generating high-performance, robust and more stable results. This study aims to improve the results of identifying the Persian handwritten letters using Error Correcting Output Coding (ECOC) ensemble method. Furthermore, the feature selection is used to reduce the costs of errors in our proposed method. ECOC is a method for decomposing a multi-way classification problem into many binary classification tasks; and then combining the results of the subtasks into a hypothesized solution to the original problem. Firstly, the image features are extracted by Principal Components Analysis (PCA). After that, ECOC is used for identification the Persian handwritten letters which it uses Support Vector Machine (SVM) as the base classifier. The empirical results of applying this ensemble method using 10 real-world data sets of Persian handwritten letters indicate that this method has better results in identifying the Persian handwritten letters than other ensemble methods and also single classifications. Moreover, by testing a number of different features, this paper found that we can reduce the additional cost in feature selection stage by using this method.Comment: Journal of Advances in Computer Researc

    Automated detection and classification of cryptographic algorithms in binary programs through machine learning

    Full text link
    Threats from the internet, particularly malicious software (i.e., malware) often use cryptographic algorithms to disguise their actions and even to take control of a victim's system (as in the case of ransomware). Malware and other threats proliferate too quickly for the time-consuming traditional methods of binary analysis to be effective. By automating detection and classification of cryptographic algorithms, we can speed program analysis and more efficiently combat malware. This thesis will present several methods of leveraging machine learning to automatically discover and classify cryptographic algorithms in compiled binary programs. While further work is necessary to fully evaluate these methods on real-world binary programs, the results in this paper suggest that machine learning can be used successfully to detect and identify cryptographic primitives in compiled code. Currently, these techniques successfully detect and classify cryptographic algorithms in small single-purpose programs, and further work is proposed to apply them to real-world examples.Comment: Thesis submitted in partial fulfillment of MSE CS degree at Johns Hopkins University, 25 page

    Ontology-supported processing of clinical text using medical knowledge integration for multi-label classification of diagnosis coding

    Full text link
    This paper discusses the knowledge integration of clinical information extracted from distributed medical ontology in order to ameliorate a machine learning-based multi-label coding assignment system. The proposed approach is implemented using a decision tree based cascade hierarchical technique on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding.Comment: IEEE Publication format, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Image Classification on IoT Edge Devices: Profiling and Modeling

    Full text link
    With the advent of powerful, low-cost IoT systems, processing data closer to where the data originates, known as edge computing, has become an increasingly viable option. In addition to lowering the cost of networking infrastructures, edge computing reduces edge-cloud delay, which is essential for mission-critical applications. In this paper, we show the feasibility and study the performance of image classification using IoT devices. Specifically, we explore the relationships between various factors of image classification algorithms that may affect energy consumption such as dataset size, image resolution, algorithm type, algorithm phase, and device hardware. Our experiments show a strong, positive linear relationship between three predictor variables, namely model complexity, image resolution, and dataset size, with respect to energy consumption. In addition, in order to provide a means of predicting the energy consumption of an edge device performing image classification, we investigate the usage of three machine learning algorithms using the data generated from our experiments. The performance as well as the trade offs for using linear regression, Gaussian process, and random forests are discussed and validated. Our results indicate that the random forest model outperforms the two former algorithms, with an R-squared value of 0.95 and 0.79 for two different validation datasets

    Hierarchical Routing Mixture of Experts

    Full text link
    In regression tasks the distribution of the data is often too complex to be fitted by a single model. In contrast, partition-based models are developed where data is divided and fitted by local models. These models partition the input space and do not leverage the input-output dependency of multimodal-distributed data, and strong local models are needed to make good predictions. Addressing these problems, we propose a binary tree-structured hierarchical routing mixture of experts (HRME) model that has classifiers as non-leaf node experts and simple regression models as leaf node experts. The classifier nodes jointly soft-partition the input-output space based on the natural separateness of multimodal data. This enables simple leaf experts to be effective for prediction. Further, we develop a probabilistic framework for the HRME model, and propose a recursive Expectation-Maximization (EM) based algorithm to learn both the tree structure and the expert models. Experiments on a collection of regression tasks validate the effectiveness of our method compared to a variety of other regression models.Comment: 9 pages,4 figure
    • …
    corecore