360 research outputs found

    Transparent support for partial rollback in software transactional memories

    Get PDF
    The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag

    An Efficient Concurrency Control Technique for Mobile Database Environment

    Get PDF
    Day by day wireless networking technology and mobile computing devices are becoming more popular for their mobility as well as great functionality Now it is an extremely growing demand to process mobile transactions in mobile databases that allow mobile users to access and operate data anytime and anywhere irrespective of their physical positions Information is shared among multiple clients and can be modified by each client independently However for the assurance of timely access and correct results in concurrent mobile transactions concurrency control techniques CCT happen to be very difficult Due to the properties of Mobile databases e g inadequate bandwidth small processing capability unreliable communication mobility etc existing mobile database CCTs cannot employ effectively With the client-server model applying common classic pessimistic techniques of concurrency control like 2PL in mobile database leads to long duration Blocking and increasing waiting time of transactions Because of high rate of aborting transactions optimistic techniques aren t appropriate in mobile database as well This paper discusses the issues that need to be addressed when designing a CCT technique for Mobile databases analyses the existing scheme of CCT and justify their performance limitations A modified optimistic concurrency control scheme is proposed which is based on the number of data items cached amount of execution time and current load of the database server Experimental results show performance benefits such as increase in average response time and decrease in waiting time of the transaction

    Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches

    Get PDF
    Synchronization transparency offered by Software Transactional Memory (STM) must not come at the expense of run-time efficiency, thus demanding from the STM-designer the inclusion of mechanisms properly oriented to performance and other quality indexes. Particularly, one core issue to cope with in STM is related to exploiting parallelism while also avoiding thrashing phenomena due to excessive transaction rollbacks, caused by excessively high levels of contention on logical resources, namely concurrently accessed data portions. A means to address run-time efficiency consists in dynamically determining the best-suited level of concurrency (number of threads) to be employed for running the application (or specific application phases) on top of the STM layer. For too low levels of concurrency, parallelism can be hampered. Conversely, over-dimensioning the concurrency level may give rise to the aforementioned thrashing phenomena caused by excessive data contention—an aspect which has reflections also on the side of reduced energy-efficiency. In this chapter we overview a set of recent techniques aimed at building “application-specific” performance models that can be exploited to dynamically tune the level of concurrency to the best-suited value. Although they share some base concepts while modeling the system performance vs the degree of concurrency, these techniques rely on disparate methods, such as machine learning or analytic methods (or combinations of the two), and achieve different tradeoffs in terms of the relation between the precision of the performance model and the latency for model instantiation. Implications of the different tradeoffs in real-life scenarios are also discussed

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Analytical/ML Mixed Approach for Concurrency Regulation in Software Transactional Memory

    Get PDF
    In this article we exploit a combination of analytical and Machine Learning (ML) techniques in order to build a performance model allowing to dynamically tune the level of concurrency of applications based on Software Transactional Memory (STM). Our mixed approach has the advantage of reducing the training time of pure machine learning methods, and avoiding approximation errors typically affecting pure analytical approaches. Hence it allows very fast construction of highly reliable performance models, which can be promptly and effectively exploited for optimizing actual application runs. We also present a real implementation of a concurrency regulation architecture, based on the mixed modeling approach, which has been integrated with the open source Tiny STM package, together with experimental data related to runs of applications taken from the STAMP benchmark suite demonstrating the effectiveness of our proposal. © 2014 IEEE
    • …
    corecore