2,478 research outputs found

    Natural Language Interactions in Autonomous Vehicles: Intent Detection and Slot Filling from Passenger Utterances

    Full text link
    Understanding passenger intents and extracting relevant slots are important building blocks towards developing contextual dialogue systems for natural interactions in autonomous vehicles (AV). In this work, we explored AMIE (Automated-vehicle Multi-modal In-cabin Experience), the in-cabin agent responsible for handling certain passenger-vehicle interactions. When the passengers give instructions to AMIE, the agent should parse such commands properly and trigger the appropriate functionality of the AV system. In our current explorations, we focused on AMIE scenarios describing usages around setting or changing the destination and route, updating driving behavior or speed, finishing the trip and other use-cases to support various natural commands. We collected a multi-modal in-cabin dataset with multi-turn dialogues between the passengers and AMIE using a Wizard-of-Oz scheme via a realistic scavenger hunt game activity. After exploring various recent Recurrent Neural Networks (RNN) based techniques, we introduced our own hierarchical joint models to recognize passenger intents along with relevant slots associated with the action to be performed in AV scenarios. Our experimental results outperformed certain competitive baselines and achieved overall F1 scores of 0.91 for utterance-level intent detection and 0.96 for slot filling tasks. In addition, we conducted initial speech-to-text explorations by comparing intent/slot models trained and tested on human transcriptions versus noisy Automatic Speech Recognition (ASR) outputs. Finally, we compared the results with single passenger rides versus the rides with multiple passengers.Comment: Accepted and presented as a full paper at 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2019), April 7-13, 2019, La Rochelle, Franc

    Joint Slot Filling and Intent Detection via Capsule Neural Networks

    Full text link
    Being able to recognize words as slots and detect the intent of an utterance has been a keen issue in natural language understanding. The existing works either treat slot filling and intent detection separately in a pipeline manner, or adopt joint models which sequentially label slots while summarizing the utterance-level intent without explicitly preserving the hierarchical relationship among words, slots, and intents. To exploit the semantic hierarchy for effective modeling, we propose a capsule-based neural network model which accomplishes slot filling and intent detection via a dynamic routing-by-agreement schema. A re-routing schema is proposed to further synergize the slot filling performance using the inferred intent representation. Experiments on two real-world datasets show the effectiveness of our model when compared with other alternative model architectures, as well as existing natural language understanding services.Comment: In ACL 2019 as a long paper. Code and data available at https://github.com/czhang99/Capsule-NL

    Coupled Representation Learning for Domains, Intents and Slots in Spoken Language Understanding

    Full text link
    Representation learning is an essential problem in a wide range of applications and it is important for performing downstream tasks successfully. In this paper, we propose a new model that learns coupled representations of domains, intents, and slots by taking advantage of their hierarchical dependency in a Spoken Language Understanding system. Our proposed model learns the vector representation of intents based on the slots tied to these intents by aggregating the representations of the slots. Similarly, the vector representation of a domain is learned by aggregating the representations of the intents tied to a specific domain. To the best of our knowledge, it is the first approach to jointly learning the representations of domains, intents, and slots using their hierarchical relationships. The experimental results demonstrate the effectiveness of the representations learned by our model, as evidenced by improved performance on the contextual cross-domain reranking task.Comment: IEEE SLT 201

    Cross-lingual transfer learning for spoken language understanding

    Full text link
    Typically, spoken language understanding (SLU) models are trained on annotated data which are costly to gather. Aiming to reduce data needs for bootstrapping a SLU system for a new language, we present a simple but effective weight transfer approach using data from another language. The approach is evaluated with our promising multi-task SLU framework developed towards different languages. We evaluate our approach on the ATIS and a real-world SLU dataset, showing that i) our monolingual models outperform the state-of-the-art, ii) we can reduce data amounts needed for bootstrapping a SLU system for a new language greatly, and iii) while multitask training improves over separate training, different weight transfer settings may work best for different SLU modules.Comment: accepted at ICASSP, 201

    An Efficient Approach to Encoding Context for Spoken Language Understanding

    Full text link
    In task-oriented dialogue systems, spoken language understanding, or SLU, refers to the task of parsing natural language user utterances into semantic frames. Making use of context from prior dialogue history holds the key to more effective SLU. State of the art approaches to SLU use memory networks to encode context by processing multiple utterances from the dialogue at each turn, resulting in significant trade-offs between accuracy and computational efficiency. On the other hand, downstream components like the dialogue state tracker (DST) already keep track of the dialogue state, which can serve as a summary of the dialogue history. In this work, we propose an efficient approach to encoding context from prior utterances for SLU. More specifically, our architecture includes a separate recurrent neural network (RNN) based encoding module that accumulates dialogue context to guide the frame parsing sub-tasks and can be shared between SLU and DST. In our experiments, we demonstrate the effectiveness of our approach on dialogues from two domains.Comment: Submitted to INTERSPEECH 201

    A Survey on Dialogue Systems: Recent Advances and New Frontiers

    Full text link
    Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1703.01008 by other author

    Deep Cascade Multi-task Learning for Slot Filling in Online Shopping Assistant

    Full text link
    Slot filling is a critical task in natural language understanding (NLU) for dialog systems. State-of-the-art approaches treat it as a sequence labeling problem and adopt such models as BiLSTM-CRF. While these models work relatively well on standard benchmark datasets, they face challenges in the context of E-commerce where the slot labels are more informative and carry richer expressions. In this work, inspired by the unique structure of E-commerce knowledge base, we propose a novel multi-task model with cascade and residual connections, which jointly learns segment tagging, named entity tagging and slot filling. Experiments show the effectiveness of the proposed cascade and residual structures. Our model has a 14.6% advantage in F1 score over the strong baseline methods on a new Chinese E-commerce shopping assistant dataset, while achieving competitive accuracies on a standard dataset. Furthermore, online test deployed on such dominant E-commerce platform shows 130% improvement on accuracy of understanding user utterances. Our model has already gone into production in the E-commerce platform.Comment: AAAI 201

    OneNet: Joint Domain, Intent, Slot Prediction for Spoken Language Understanding

    Full text link
    In practice, most spoken language understanding systems process user input in a pipelined manner; first domain is predicted, then intent and semantic slots are inferred according to the semantic frames of the predicted domain. The pipeline approach, however, has some disadvantages: error propagation and lack of information sharing. To address these issues, we present a unified neural network that jointly performs domain, intent, and slot predictions. Our approach adopts a principled architecture for multitask learning to fold in the state-of-the-art models for each task. With a few more ingredients, e.g. orthography-sensitive input encoding and curriculum training, our model delivered significant improvements in all three tasks across all domains over strong baselines, including one using oracle prediction for domain detection, on real user data of a commercial personal assistant.Comment: 5 pages conference paper accepted to IEEE ASRU 2017. Will be published in December 201

    BERT for Joint Intent Classification and Slot Filling

    Full text link
    Intent classification and slot filling are two essential tasks for natural language understanding. They often suffer from small-scale human-labeled training data, resulting in poor generalization capability, especially for rare words. Recently a new language representation model, BERT (Bidirectional Encoder Representations from Transformers), facilitates pre-training deep bidirectional representations on large-scale unlabeled corpora, and has created state-of-the-art models for a wide variety of natural language processing tasks after simple fine-tuning. However, there has not been much effort on exploring BERT for natural language understanding. In this work, we propose a joint intent classification and slot filling model based on BERT. Experimental results demonstrate that our proposed model achieves significant improvement on intent classification accuracy, slot filling F1, and sentence-level semantic frame accuracy on several public benchmark datasets, compared to the attention-based recurrent neural network models and slot-gated models.Comment: 4 pages, 1 figur

    Efficient Large-Scale Domain Classification with Personalized Attention

    Full text link
    In this paper, we explore the task of mapping spoken language utterances to one of thousands of natural language understanding domains in intelligent personal digital assistants (IPDAs). This scenario is observed for many mainstream IPDAs in industry that allow third parties to develop thousands of new domains to augment built-in ones to rapidly increase domain coverage and overall IPDA capabilities. We propose a scalable neural model architecture with a shared encoder, a novel attention mechanism that incorporates personalization information and domain-specific classifiers that solves the problem efficiently. Our architecture is designed to efficiently accommodate new domains that appear in-between full model retraining cycles with a rapid bootstrapping mechanism two orders of magnitude faster than retraining. We account for practical constraints in real-time production systems, and design to minimize memory footprint and runtime latency. We demonstrate that incorporating personalization results in significantly more accurate domain classification in the setting with thousands of overlapping domains.Comment: Accepted to ACL 201
    • …
    corecore