110 research outputs found

    General Interface Description of Websites using CLICK and UIML

    Get PDF
    This paper explores the domain of programming paradigm for Multi-Platform User Interfaces using XML based languages. The main focus of this work is User Interface Markup Language (UIML), an XML based language for describing user interfaces in a platform-independent manner. We have explored the capabilities of UIML as an interface description language for describing interactive websites. We have selected an end-user web programming tool called CLICK, which also uses an XML based interface description for the websites created through it. We have analyzed both the representations and devised a conversion process from CLICK XML to UIML. We have found that UIML is expressive enough to represent applications built using CLICK. UIML provides various benefits over the interface description generated by CLICK especially that of facilitating the development of web based interfaces for multiple platforms through CLICK

    Semi-automated creation of converged iTV services: From macromedia director simulations to services ready for broadcast

    Get PDF
    While sound and video may capture viewers’ attention, interaction can captivate them. This has not been available prior to the advent of Digital Television. In fact, what lies at the heart of the Digital Television revolution is this new type of interactive content, offered in the form of interactive Television (iTV) services. On top of that, the new world of converged networks has created a demand for a new type of converged services on a range of mobile terminals (Tablet PCs, PDAs and mobile phones). This paper aims at presenting a new approach to service creation that allows for the semi-automatic translation of simulations and rapid prototypes created in the accessible desktop multimedia authoring package Macromedia Director into services ready for broadcast. This is achieved by a series of tools that de-skill and speed-up the process of creating digital TV user interfaces (UI) and applications for mobile terminals. The benefits of rapid prototyping are essential for the production of these new types of services, and are therefore discussed in the first section of this paper. In the following sections, an overview of the operation of content, service, creation and management sub-systems is presented, which illustrates why these tools compose an important and integral part of a system responsible of creating, delivering and managing converged broadcast and telecommunications services. The next section examines a number of metadata languages candidates for describing the iTV services user interface and the schema language adopted in this project. A detailed description of the operation of the two tools is provided to offer an insight of how they can be used to de-skill and speed-up the process of creating digital TV user interfaces and applications for mobile terminals. Finally, representative broadcast oriented and telecommunication oriented converged service components are also introduced, demonstrating how these tools have been used to generate different types of services

    Dynamically generated multi-modal application interfaces

    Get PDF
    This work introduces a new UIMS (User Interface Management System), which aims to solve numerous problems in the field of user-interface development arising from hard-coded use of user interface toolkits. The presented solution is a concrete system architecture based on the abstract ARCH model consisting of an interface abstraction-layer, a dialog definition language called GIML (Generalized Interface Markup Language) and pluggable interface rendering modules. These components form an interface toolkit called GITK (Generalized Interface ToolKit). With the aid of GITK (Generalized Interface ToolKit) one can build an application, without explicitly creating a concrete end-user interface. At runtime GITK can create these interfaces as needed from the abstract specification and run them. Thereby GITK is equipping one application with many interfaces, even kinds of interfaces that did not exist when the application was written. It should be noted that this work will concentrate on providing the base infrastructure for adaptive/adaptable system, and does not aim to deliver a complete solution. This work shows that the proposed solution is a fundamental concept needed to create interfaces for everyone, which can be used everywhere and at any time. This text further discusses the impact of such technology for users and on the various aspects of software systems and their development. The targeted main audience of this work are software developers or people with strong interest in software development

    User Interface Abstraction for enabling TV set based Inclusive Access to the Information Society

    Get PDF
    199 p.The television (TV) set is present in most homes worldwide, and is the most used Information and Communication Technology (ICT). Despite its large implantation in the market, the interactive services consumption on TV set is limited. This thesis focuses on overcoming the following limiting factors: (i) limited Human Computer Interaction and (ii) lack of considering user’s real life context in the digital television (dTV) service integration strategy. Making interactive services accessible to TV set’s large user base, and especially to the most vulnerable ones, is understood as the path to integrate the mankind with the information society. This thesis explores the use of user interface abstraction technologies to reach the introduced goals. The main contributions of this thesis are: (i) an approach to enable the universally accessible remote control of the TV set, (ii) an approach for the provision of universally accessible interactive services through TV sets, and (iii) an approach for the provision of universally accessible services in the TV user’s real life context. We have implemented the contributing approaches for different use cases, and we have evaluated them with real users, achieving good results

    Accelerated Graphical User Interfaces

    Get PDF
    Tato práce je zaměřena na multiplatformní grafická uživatelské rozhraní a jejich hardwarovou akceleraci. Popisuje, co to uživatelské rozhraní jsou a srovnává nástroje na jejich tvorbu  a způsoby jejich realizace. Hlavním bodem je vlastní návrh a implementace nástroje na tvorbu multiplatformních hardwarově akcelerovaných grafických uživatelských rozhraní. Srovnává vlastní koncept s existujícími řešeními, a uvádí ho do praxe na projektu s externí firmou.This thesis is focused on a multi-platform graphical user interface and its hardware acceleration. It describes what the user interfaces are, it compares the tools used for their creation, and the methods of their realization. The main focus is a custom design and implementation of tools used for creating a cross-platform hardware accelerated graphical user interface. It compares my own concept with existing solutions, and places it into practice on a project with an external company.

    FlexiXML : a portable user interface rendering engine for UsiXML

    Get PDF
    A considerable amount of effort in software development is dedicated to the user interaction layer.Given the complexity inherent to the development of this layer, it is important to be able to analyse the concepts and ideas being used in the development of a given user interface. This analysis should be performed as early as possible. Model- based user interface development provides a solution to this problem by providing developers with tools that enable both modeling, and reasoning about, user interfaces at different levels of abstraction. Of particular interest here, is the possibility of animating the models to generate actual user interfaces. This paper describes FlexiXML, a tool that performs the rendering and animation of user interfaces described in the UsiXML modeling language

    Reverse-engineering user interfaces to facilitateporting to and across mobile devices and platforms

    Full text link
    As mobile devices are rapidly replacing desktop computers for a growing number of users, existing user interfaces often need to be ported from the desktop to a mobile device. In ad-dition, successful user interfaces written for one mobile plat-form are commonly ported to other mobile platforms. Tra-ditionally, porting user interfaces requires that their source code be reverse-engineered and translated, which is difficult and error-prone. In this paper, we present an approach that reverse-engineers user interfaces without having to analyze their source code. Specifically, our approach examines an in-terface’s runtime representation by means of aspect-oriented programming (AOP). An aspect intercepts the program’s control flow at the point when all the components of an in-terface are laid out on the screen, but before the interface is displayed. The aspect analyzes the interface’s in-memory representation and extracts a platform-independent model that can then be used to generate equivalent interfaces for other devices and platforms. Our initial proof of concept ports Java Swing interfaces to Android. In this paper, we describe our approach, discuss its main technical challenges, and outline future research directions

    Performance assessment of an architecture with adaptative interfaces for people with special needs

    Get PDF
    People in industrial societies carry more and more portable electronic devices (e.g., smartphone or console) with some kind of wireles connectivity support. Interaction with auto-discovered target devices present in the environment (e.g., the air conditioning of a hotel) is not so easy since devices may provide inaccessible user interfaces (e.g., in a foreign language that the user cannot understand). Scalability for multiple concurrent users and response times are still problems in this domain. In this paper, we assess an interoperable architecture, which enables interaction between people with some kind of special need and their environment. The assessment, based on performance patterns and antipatterns, tries to detect performance issues and also tries to enhance the architecture design for improving system performance. As a result of the assessment, the initial design changed substantially. We refactorized the design according to the Fast Path pattern and The Ramp antipattern. Moreover, resources were correctly allocated. Finally, the required response time was fulfilled in all system scenarios. For a specific scenario, response time was reduced from 60 seconds to less than 6 seconds
    corecore