47,443 research outputs found

    Latency Optimal Broadcasting in Noisy Wireless Mesh Networks

    Full text link
    In this paper, we adopt a new noisy wireless network model introduced very recently by Censor-Hillel et al. in [ACM PODC 2017, CHHZ17]. More specifically, for a given noise parameter p[0,1],p\in [0,1], any sender has a probability of pp of transmitting noise or any receiver of a single transmission in its neighborhood has a probability pp of receiving noise. In this paper, we first propose a new asymptotically latency-optimal approximation algorithm (under faultless model) that can complete single-message broadcasting task in D+O(log2n)D+O(\log^2 n) time units/rounds in any WMN of size n,n, and diameter DD. We then show this diameter-linear broadcasting algorithm remains robust under the noisy wireless network model and also improves the currently best known result in CHHZ17 by a Θ(loglogn)\Theta(\log\log n) factor. In this paper, we also further extend our robust single-message broadcasting algorithm to kk multi-message broadcasting scenario and show it can broadcast kk messages in O(D+klogn+log2n)O(D+k\log n+\log^2 n) time rounds. This new robust multi-message broadcasting scheme is not only asymptotically optimal but also answers affirmatively the problem left open in CHHZ17 on the existence of an algorithm that is robust to sender and receiver faults and can broadcast kk messages in O(D+klogn+polylog(n))O(D+k\log n + polylog(n)) time rounds.Comment: arXiv admin note: text overlap with arXiv:1705.07369 by other author

    A Multi-objective Perspective for Operator Scheduling using Fine-grained DVS Architecture

    Full text link
    The stringent power budget of fine grained power managed digital integrated circuits have driven chip designers to optimize power at the cost of area and delay, which were the traditional cost criteria for circuit optimization. The emerging scenario motivates us to revisit the classical operator scheduling problem under the availability of DVFS enabled functional units that can trade-off cycles with power. We study the design space defined due to this trade-off and present a branch-and-bound(B/B) algorithm to explore this state space and report the pareto-optimal front with respect to area and power. The scheduling also aims at maximum resource sharing and is able to attain sufficient area and power gains for complex benchmarks when timing constraints are relaxed by sufficient amount. Experimental results show that the algorithm that operates without any user constraint(area/power) is able to solve the problem for most available benchmarks, and the use of power budget or area budget constraints leads to significant performance gain.Comment: 18 pages, 6 figures, International journal of VLSI design & Communication Systems (VLSICS

    Computation-Communication Trade-offs and Sensor Selection in Real-time Estimation for Processing Networks

    Full text link
    Recent advances in electronics are enabling substantial processing to be performed at each node (robots, sensors) of a networked system. Local processing enables data compression and may mitigate measurement noise, but it is still slower compared to a central computer (it entails a larger computational delay). However, while nodes can process the data in parallel, the centralized computational is sequential in nature. On the other hand, if a node sends raw data to a central computer for processing, it incurs communication delay. This leads to a fundamental communication-computation trade-off, where each node has to decide on the optimal amount of preprocessing in order to maximize the network performance. We consider a network in charge of estimating the state of a dynamical system and provide three contributions. First, we provide a rigorous problem formulation for optimal real-time estimation in processing networks in the presence of delays. Second, we show that, in the case of a homogeneous network (where all sensors have the same computation) that monitors a continuous-time scalar linear system, the optimal amount of local preprocessing maximizing the network estimation performance can be computed analytically. Third, we consider the realistic case of a heterogeneous network monitoring a discrete-time multi-variate linear system and provide algorithms to decide on suitable preprocessing at each node, and to select a sensor subset when computational constraints make using all sensors suboptimal. Numerical simulations show that selecting the sensors is crucial. Moreover, we show that if the nodes apply the preprocessing policy suggested by our algorithms, they can largely improve the network estimation performance.Comment: 15 pages, 16 figures. Accepted journal versio

    Multi-criteria scheduling of pipeline workflows

    Get PDF
    Mapping workflow applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline graphs. Several antagonist criteria should be optimized, such as throughput and latency (or a combination). In this paper, we study the complexity of the bi-criteria mapping problem for pipeline graphs on communication homogeneous platforms. In particular, we assess the complexity of the well-known chains-to-chains problem for different-speed processors, which turns out to be NP-hard. We provide several efficient polynomial bi-criteria heuristics, and their relative performance is evaluated through extensive simulations

    Feasibility Study of Enabling V2X Communications by LTE-Uu Radio Interface

    Full text link
    Compared with the legacy wireless networks, the next generation of wireless network targets at different services with divergent QoS requirements, ranging from bandwidth consuming video service to moderate and low date rate machine type services, and supporting as well as strict latency requirements. One emerging new service is to exploit wireless network to improve the efficiency of vehicular traffic and public safety. However, the stringent packet end-to-end (E2E) latency and ultra-low transmission failure rates pose challenging requirements on the legacy networks. In other words, the next generation wireless network needs to support ultra-reliable low latency communications (URLLC) involving new key performance indicators (KPIs) rather than the conventional metric, such as cell throughput in the legacy systems. In this paper, a feasibility study on applying today's LTE network infrastructure and LTE-Uu air interface to provide the URLLC type of services is performed, where the communication takes place between two traffic participants (e.g., vehicle-to-vehicle and vehicle-to-pedestrian). To carry out this study, an evaluation methodology of the cellular vehicle-to-anything (V2X) communication is proposed, where packet E2E latency and successful transmission rate are considered as the key performance indicators (KPIs). Then, we describe the simulation assumptions for the evaluation. Based on them, simulation results are depicted that demonstrate the performance of the LTE network in fulfilling new URLLC requirements. Moreover, sensitivity analysis is also conducted regarding how to further improve system performance, in order to enable new emerging URLLC services.Comment: Accepted by IEEE/CIC ICCC 201
    corecore