4,320 research outputs found

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    A review of personal communications services

    Get PDF
    This article can be accessed from the link below - Copyright @ 2009 Nova Science Publishers, LtdPCS is an acronym for Personal Communications Service. PCS has two layers of meaning. At the low layer, from the technical perspective, PCS is a 2G mobile communication technology operating at the 1900 MHz frequency range. At the upper layer, PCS is often used as an umbrella term that includes various wireless access and personal mobility services with the ultimate goal of enabling users to freely communicate with anyone at anytime and anywhere according to their demand. Ubiquitous PCS can be implemented by integrating the wireless and wireline systems on the basis of intelligent network (IN), which provides network functions of terminal and personal mobility. In this chapter, we focus on various aspects of PCS except location management. First we describe the motivation and technological evolution for personal communications. Then we introduce three key issues related to PCS: spectrum allocation, mobility, and standardization efforts. Since PCS involves several different communication technologies, we introduce its heterogeneous and distributed system architecture. IN is also described in detail because it plays a critical role in the development of PCS. Finally, we introduce the application of PCS and its deployment status since the mid-term of 1990’s.This work was supported in part by the National Natural Science Foundation of China under Grant No. 60673159 and 70671020; the National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z214, and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Fixed Mobile Convergence a IMS Approach

    Get PDF
    The paper is aimed at studying and analyzing the network performance parameters of SIP protocol. SIP is content based protocol, in which various message are required to be transacted so that a session could be created, terminated or modified. Therefore, the objective is to analyze various SIP activities and the delay incurred in session start-up under various network conditions. Proper functioning of IMS platform is dependent on optimum performance of several protocols specified in the standard. Nearly all of the protocols used in IMS are standardized by the IETF. Some of the major protocols are SIP, SDP- signaling protocol, DIAMETERimprovised version of RADIUS protocol,COPS- Common Open Policy Service, H.248- descendant of MEGACo, RTP/RTCPReal Time Protocol/Real Time Control Protocol, etc. Out of all these, Session Initiation Protocol (SIP) is the prominent protocol used to create, terminate and modify the sessions initiated by the user. In order to improve the performance parameters, this is the area where most of the research work is centralized. Hence, to study various aspects of SIP protocol with respect to the network performance is of great interest

    FastM: Design and Evaluation of a Fast Mobility Mechanism for Wireless Mesh Networks

    Get PDF
    Although there is a large volume of work in the literature in terms of mobility approaches for Wireless Mesh Networks, usually these approaches introduce high latency in the handover process and do not support realtime services and applications. Moreover, mobility is decoupled from routing, which leads to inefficiency to both mobility and routing approaches with respect to mobility. In this paper we present a new extension to proactive routing protocols using a fast mobility extension, FastM, with the purpose of increasing handover performance in Wireless Mesh Networks. With this new extension, a new concept is created to integrate information between neighbor wireless mesh routers, managing locations of clients associated to wireless mesh routers in a certain neighborhood, and avoiding packet loss during handover. The proposed mobility approach is able to optimize the handover process without imposing any modifications to the current IEE 802.11 MAC protocol and use unmodified clients. Results show the improved efficiency of the proposed scheme: metrics such as disconnection time, throughput, packet loss and control overhead are largely improved when compared to previous approaches. Moreover, these conclusions apply to mobility scenarios, although mobility decreases the performance of the handover approach, as expected
    corecore