11,276 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method

    COACHES Cooperative Autonomous Robots in Complex and Human Populated Environments

    Get PDF
    Public spaces in large cities are increasingly becoming complex and unwelcoming environments. Public spaces progressively become more hostile and unpleasant to use because of the overcrowding and complex information in signboards. It is in the interest of cities to make their public spaces easier to use, friendlier to visitors and safer to increasing elderly population and to citizens with disabilities. Meanwhile, we observe, in the last decade a tremendous progress in the development of robots in dynamic, complex and uncertain environments. The new challenge for the near future is to deploy a network of robots in public spaces to accomplish services that can help humans. Inspired by the aforementioned challenges, COACHES project addresses fundamental issues related to the design of a robust system of self-directed autonomous robots with high-level skills of environment modelling and scene understanding, distributed autonomous decision-making, short-term interacting with humans and robust and safe navigation in overcrowding spaces. To this end, COACHES will provide an integrated solution to new challenges on: (1) a knowledge-based representation of the environment, (2) human activities and needs estimation using Markov and Bayesian techniques, (3) distributed decision-making under uncertainty to collectively plan activities of assistance, guidance and delivery tasks using Decentralized Partially Observable Markov Decision Processes with efficient algorithms to improve their scalability and (4) a multi-modal and short-term human-robot interaction to exchange information and requests. COACHES project will provide a modular architecture to be integrated in real robots. We deploy COACHES at Caen city in a mall called “Rive de l’orne”. COACHES is a cooperative system consisting of ?xed cameras and the mobile robots. The ?xed cameras can do object detection, tracking and abnormal events detection (objects or behaviour). The robots combine these information with the ones perceived via their own sensor, to provide information through its multi-modal interface, guide people to their destinations, show tramway stations and transport goods for elderly people, etc.... The COACHES robots will use different modalities (speech and displayed information) to interact with the mall visitors, shopkeepers and mall managers. The project has enlisted an important an end-user (Caen la mer) providing the scenarios where the COACHES robots and systems will be deployed, and gather together universities with complementary competences from cognitive systems (SU), robust image/video processing (VUB, UNICAEN), and semantic scene analysis and understanding (VUB), Collective decision-making using decentralized partially observable Markov Decision Processes and multi-agent planning (UNICAEN, Sapienza), multi-modal and short-term human-robot interaction (Sapienza, UNICAEN

    Learning Deployable Navigation Policies at Kilometer Scale from a Single Traversal

    Full text link
    Model-free reinforcement learning has recently been shown to be effective at learning navigation policies from complex image input. However, these algorithms tend to require large amounts of interaction with the environment, which can be prohibitively costly to obtain on robots in the real world. We present an approach for efficiently learning goal-directed navigation policies on a mobile robot, from only a single coverage traversal of recorded data. The navigation agent learns an effective policy over a diverse action space in a large heterogeneous environment consisting of more than 2km of travel, through buildings and outdoor regions that collectively exhibit large variations in visual appearance, self-similarity, and connectivity. We compare pretrained visual encoders that enable precomputation of visual embeddings to achieve a throughput of tens of thousands of transitions per second at training time on a commodity desktop computer, allowing agents to learn from millions of trajectories of experience in a matter of hours. We propose multiple forms of computationally efficient stochastic augmentation to enable the learned policy to generalise beyond these precomputed embeddings, and demonstrate successful deployment of the learned policy on the real robot without fine tuning, despite environmental appearance differences at test time. The dataset and code required to reproduce these results and apply the technique to other datasets and robots is made publicly available at rl-navigation.github.io/deployable
    corecore