160,285 research outputs found

    Market segmentation and ideal point identification for new product design using fuzzy data compression and fuzzy clustering methods

    Get PDF
    In product design, various methodologies have been proposed for market segmentation, which group consumers with similar customer requirements into clusters. Central points on market segments are always used as ideal points of customer requirements for product design, which reflects particular competitive strategies to effectively reach all consumers’ interests. However, existing methodologies ignore the fuzziness on consumers’ customer requirements. In this paper, a new methodology is proposed to perform market segmentation based on consumers’ customer requirements, which exist fuzziness. The methodology is an integration of a fuzzy compression technique for multi-dimension reduction and a fuzzy clustering technique. It first compresses the fuzzy data regarding customer requirements from high dimensions into two dimensions. After the fuzzy data is clustered into marketing segments, the centre points of market segments are used as ideal points for new product development. The effectiveness of the proposed methodology in market segmentation and identification of the ideal points for new product design is demonstrated using a case study of new digital camera design

    Enabling Fine-Grain Restricted Coset Coding Through Word-Level Compression for PCM

    Full text link
    Phase change memory (PCM) has recently emerged as a promising technology to meet the fast growing demand for large capacity memory in computer systems, replacing DRAM that is impeded by physical limitations. Multi-level cell (MLC) PCM offers high density with low per-byte fabrication cost. However, despite many advantages, such as scalability and low leakage, the energy for programming intermediate states is considerably larger than programing single-level cell PCM. In this paper, we study encoding techniques to reduce write energy for MLC PCM when the encoding granularity is lowered below the typical cache line size. We observe that encoding data blocks at small granularity to reduce write energy actually increases the write energy because of the auxiliary encoding bits. We mitigate this adverse effect by 1) designing suitable codeword mappings that use fewer auxiliary bits and 2) proposing a new Word-Level Compression (WLC) which compresses more than 91% of the memory lines and provides enough room to store the auxiliary data using a novel restricted coset encoding applied at small data block granularities. Experimental results show that the proposed encoding at 16-bit data granularity reduces the write energy by 39%, on average, versus the leading encoding approach for write energy reduction. Furthermore, it improves endurance by 20% and is more reliable than the leading approach. Hardware synthesis evaluation shows that the proposed encoding can be implemented on-chip with only a nominal area overhead.Comment: 12 page

    Posterior Cervical Spine Crisscross Fixation: Biomechanical Evaluation

    Get PDF
    Background Biomechanical/anatomic limitations may limit the successful implantation, maintenance, and risk acceptance of posterior cervical plate/rod fixation for one stage decompression-fusion. A method of posterior fixation (crisscross) that resolves biomechanical deficiencies of previous facet wiring techniques and not reliant upon screw implantation has been devised. The biomechanical performance of the new method of facet fixation was compared to the traditional lateral mass plate/screw fixation method. Methods Thirteen human cadaver spine segments (C2-T1) were tested under flexion-compression loading and four were evaluated additionally under pure-moment load. Preparations were evaluated in a sequence of surgical alterations with intact, laminectomy, lateral mass plate/screw fixation, and crisscross facet fixation using forces, displacements and kinematics. Findings Combined loading demonstrated significantly lower bending stiffness (p \u3c 0.05) between laminectomy compared to crisscross and lateral mass plate/screw preparations. Crisscross fixation showed a comparative tendency for increased stiffness. The increased overall motion induced by laminectomy was resolved by both fixation techniques, with crisscross fixation demonstrating a comparatively more uniform change in segmental motions. Interpretation The crisscross technique of facet fixation offers immediate mechanical stability with resolution of increased flexural rotations induced by multi-level laminectomy. Many of the anatomic limitations and potentially deleterious variables that may be associated with multi-level screw fixation are not associated with facet wire passage, and the subsequent fixation using a pattern of wire connection crossing each facet joint exhibits a comparatively more uniform load distribution. Crisscross wire fixation is a valuable addition to the surgical armamentarium for extensive posterior cervical single-stage decompression-fixation

    Ultra-short pulse compression using photonic crystal fibre

    Get PDF
    A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical properties of this novel medium in terms of high non-linearity and relatively small group velocity dispersion are shown to provide an ideal platform for the standard fibre pulse compression technique used directly on the nano-Joule output pulses from a commercial laser system. We report an order of magnitude reduction of the pulse width to 25 fs FWHM but predict a substantially improved performance with a dedicated fibre design. Good agreement is obtained with a simple model for the spectral broadening in the fibre

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author
    corecore