3 research outputs found

    A Multi-Dimensional Trust Model for Processing Big Data Over Competing Clouds

    No full text

    Trust enforcement through self-adapting cloud workflow orchestration

    Get PDF
    Providing runtime intelligence of a workflow in a highly dynamic cloud execution environment is a challenging task due the continuously changing cloud resources. Guaranteeing a certain level of workflow Quality of Service (QoS) during the execution will require continuous monitoring to detect any performance violation due to resource shortage or even cloud service interruption. Most of orchestration schemes are either configuration, or deployment dependent and they do not cope with dynamically changing environment resources. In this paper, we propose a workflow orchestration, monitoring, and adaptation model that relies on trust evaluation to detect QoS performance degradation and perform an automatic reconfiguration to guarantee QoS of the workflow. The monitoring and adaptation schemes are able to detect and repair different types of real time errors and trigger different adaptation actions including workflow reconfiguration, migration, and resource scaling. We formalize the cloud resource orchestration using state machine that efficiently captures different dynamic properties of the cloud execution environment. In addition, we use validation model checker to validate our model in terms of reachability, liveness, and safety properties. Extensive experimentation is performed using a health monitoring workflow we have developed to handle dataset from Intelligent Monitoring in Intensive Care III (MIMICIII) and deployed over Docker swarm cluster. A set of scenarios were carefully chosen to evaluate workflow monitoring and the different adaptation schemes we have implemented. The results prove that our automated workflow orchestration model is self-adapting, self-configuring, react efficiently to changes and adapt accordingly while supporting high level of Workflow QoS

    End-to-End Trust Fulfillment of Big Data Workflow Provisioning over Competing Clouds

    Get PDF
    Cloud Computing has emerged as a promising and powerful paradigm for delivering data- intensive, high performance computation, applications and services over the Internet. Cloud Computing has enabled the implementation and success of Big Data, a relatively recent phenomenon consisting of the generation and analysis of abundant data from various sources. Accordingly, to satisfy the growing demands of Big Data storage, processing, and analytics, a large market has emerged for Cloud Service Providers, offering a myriad of resources, platforms, and infrastructures. The proliferation of these services often makes it difficult for consumers to select the most suitable and trustworthy provider to fulfill the requirements of building complex workflows and applications in a relatively short time. In this thesis, we first propose a quality specification model to support dual pre- and post-cloud workflow provisioning, consisting of service provider selection and workflow quality enforcement and adaptation. This model captures key properties of the quality of work at different stages of the Big Data value chain, enabling standardized quality specification, monitoring, and adaptation. Subsequently, we propose a two-dimensional trust-enabled framework to facilitate end-to-end Quality of Service (QoS) enforcement that: 1) automates cloud service provider selection for Big Data workflow processing, and 2) maintains the required QoS levels of Big Data workflows during runtime through dynamic orchestration using multi-model architecture-driven workflow monitoring, prediction, and adaptation. The trust-based automatic service provider selection scheme we propose in this thesis is comprehensive and adaptive, as it relies on a dynamic trust model to evaluate the QoS of a cloud provider prior to taking any selection decisions. It is a multi-dimensional trust model for Big Data workflows over competing clouds that assesses the trustworthiness of cloud providers based on three trust levels: (1) presence of the most up-to-date cloud resource verified capabilities, (2) reputational evidence measured by neighboring users and (3) a recorded personal history of experiences with the cloud provider. The trust-based workflow orchestration scheme we propose aims to avoid performance degradation or cloud service interruption. Our workflow orchestration approach is not only based on automatic adaptation and reconfiguration supported by monitoring, but also on predicting cloud resource shortages, thus preventing performance degradation. We formalize the cloud resource orchestration process using a state machine that efficiently captures different dynamic properties of the cloud execution environment. In addition, we use a model checker to validate our monitoring model in terms of reachability, liveness, and safety properties. We evaluate both our automated service provider selection scheme and cloud workflow orchestration, monitoring and adaptation schemes on a workflow-enabled Big Data application. A set of scenarios were carefully chosen to evaluate the performance of the service provider selection, workflow monitoring and the adaptation schemes we have implemented. The results demonstrate that our service selection outperforms other selection strategies and ensures trustworthy service provider selection. The results of evaluating automated workflow orchestration further show that our model is self-adapting, self-configuring, reacts efficiently to changes and adapts accordingly while enforcing QoS of workflows
    corecore