12,611 research outputs found

    A morphological approach for segmentation and tracking of human faces

    Get PDF
    A new technique for segmenting and tracking human faces in video sequences is presented. The technique relies on morphological tools such as using connected operators to extract the connected component that more likely belongs to a face, and partition projection to track this component through the sequence. A binary partition tree (BPT) is used to implement the connected operator. The BPT is constructed based on the chrominance criteria and its nodes are analyzed so that the selected node maximizes an estimation of the likelihood of being part of a face. The tracking is performed using a partition projection approach. Images are divided into face and non-face parts, which are tracked through the sequence. The technique has been successfully assessed using several test sequences from the MPEG-4 (raw format) and the MPEG-7 databases (MPEG-1 format).Peer ReviewedPostprint (published version

    Face detection and clustering for video indexing applications

    Get PDF
    This paper describes a method for automatically detecting human faces in generic video sequences. We employ an iterative algorithm in order to give a confidence measure for the presence or absence of faces within video shots. Skin colour filtering is carried out on a selected number of frames per video shot, followed by the application of shape and size heuristics. Finally, the remaining candidate regions are normalized and projected into an eigenspace, the reconstruction error being the measure of confidence for presence/absence of face. Following this, the confidence score for the entire video shot is calculated. In order to cluster extracted faces into a set of face classes, we employ an incremental procedure using a PCA-based dissimilarity measure in con-junction with spatio-temporal correlation. Experiments were carried out on a representative broadcast news test corpus

    A new framework for sign language recognition based on 3D handshape identification and linguistic modeling

    Full text link
    Current approaches to sign recognition by computer generally have at least some of the following limitations: they rely on laboratory conditions for sign production, are limited to a small vocabulary, rely on 2D modeling (and therefore cannot deal with occlusions and off-plane rotations), and/or achieve limited success. Here we propose a new framework that (1) provides a new tracking method less dependent than others on laboratory conditions and able to deal with variations in background and skin regions (such as the face, forearms, or other hands); (2) allows for identification of 3D hand configurations that are linguistically important in American Sign Language (ASL); and (3) incorporates statistical information reflecting linguistic constraints in sign production. For purposes of large-scale computer-based sign language recognition from video, the ability to distinguish hand configurations accurately is critical. Our current method estimates the 3D hand configuration to distinguish among 77 hand configurations linguistically relevant for ASL. Constraining the problem in this way makes recognition of 3D hand configuration more tractable and provides the information specifically needed for sign recognition. Further improvements are obtained by incorporation of statistical information about linguistic dependencies among handshapes within a sign derived from an annotated corpus of almost 10,000 sign tokens
    • 

    corecore