1,554 research outputs found

    Computation of the Binding Energies in the Inverse Problem Framework

    Full text link
    We formalized the nuclear mass problem in the inverse problem framework. This approach allows us to infer the underlying model parameters from experimental observation, rather than to predict the observations from the model parameters. The inverse problem was formulated for the numericaly generalized the semi-empirical mass formula of Bethe and von Weizs\"{a}cker. It was solved in step by step way based on the AME2012 nuclear database. The solution of the overdetermined system of nonlinear equations has been obtained with the help of the Aleksandrov's auto-regularization method of Gauss-Newton type for ill-posed problems. In the obtained generalized model the corrections to the binding energy depend on nine proton (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutron (2, 8, 14, 20, 28, 50, 82, 124, 152, 202) magic numbers as well on the asymptotic boundaries of their influence. These results help us to evaluate the borders of the nuclear landscape and show their limit. The efficiency of the applied approach was checked by comparing relevant results with the results obtained independently.Comment: 9 pages, 1 figure, Proceedings of the International Symposium on Exotic Nuclei EXON-2016, Kazan, Russia, 4-10 September 2016. based on arXiv:1602.0677

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    A novel two-point gradient method for Regularization of inverse problems in Banach spaces

    Full text link
    In this paper, we introduce a novel two-point gradient method for solving the ill-posed problems in Banach spaces and study its convergence analysis. The method is based on the well known iteratively regularized Landweber iteration method together with an extrapolation strategy. The general formulation of iteratively regularized Landweber iteration method in Banach spaces excludes the use of certain functions such as total variation like penalty functionals, L1L^1 functions etc. The novel scheme presented in this paper allows to use such non-smooth penalty terms that can be helpful in practical applications involving the reconstruction of several important features of solutions such as piecewise constancy and sparsity. We carefully discuss the choices for important parameters, such as combination parameters and step sizes involved in the design of the method. Additionally, we discuss an example to validate our assumptions.Comment: Submitted in Applicable Analysi

    Projected Newton Method for noise constrained Tikhonov regularization

    Full text link
    Tikhonov regularization is a popular approach to obtain a meaningful solution for ill-conditioned linear least squares problems. A relatively simple way of choosing a good regularization parameter is given by Morozov's discrepancy principle. However, most approaches require the solution of the Tikhonov problem for many different values of the regularization parameter, which is computationally demanding for large scale problems. We propose a new and efficient algorithm which simultaneously solves the Tikhonov problem and finds the corresponding regularization parameter such that the discrepancy principle is satisfied. We achieve this by formulating the problem as a nonlinear system of equations and solving this system using a line search method. We obtain a good search direction by projecting the problem onto a low dimensional Krylov subspace and computing the Newton direction for the projected problem. This projected Newton direction, which is significantly less computationally expensive to calculate than the true Newton direction, is then combined with a backtracking line search to obtain a globally convergent algorithm, which we refer to as the Projected Newton method. We prove convergence of the algorithm and illustrate the improved performance over current state-of-the-art solvers with some numerical experiments
    • …
    corecore