7,754 research outputs found

    Facilitating prosociality through technology: Design to promote digital volunteerism

    Get PDF
    Volunteerism covers many activities involving no financial rewards for volunteers but which contribute to the common good. There is existing work in designing technology for volunteerism in HumanComputer Interaction (HCI) and related disciplines that focuses on motivation to improve performance, but it does not account for volunteer wellbeing. Here, I investigate digital volunteerism in three case studies with a focus on volunteer motivation, engagement, and wellbeing. My research involved volunteers and others in the volunteering context to generate recommendations for a volunteer-centric design for digital volunteerism. The thesis has three aims: 1. To investigate motivational aspects critical for enhancing digital volunteers’ experiences 2. To identify digital platform attributes linked to volunteer wellbeing 3. To create guidelines for effectively supporting volunteer engagement in digital volunteering platforms In the first case study I investigate the design of a chat widget for volunteers working in an organisation with a view to develop a design that improves their workflow and wellbeing. The second case study investigates the needs, motivations, and wellbeing of volunteers who help medical students improve their medical communication skills. An initial mixed-methods study was followed by an experiment comparing two design strategies to improve volunteer relatedness; an important indicator of wellbeing. The third case study looks into volunteer needs, experiences, motivations, and wellbeing with a focus on volunteer identity and meaning-making on a science-based research platform. I then analyse my findings from these case studies using the lens of care ethics to derive critical insights for design. The key contributions of this thesis are design strategies and critical insights, and a volunteer-centric design framework to enhance the motivation, wellbeing and engagement of digital volunteers

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Prosumers’ intention to co-create business value and the moderating role of digital media usage

    Get PDF
    The study identifies the factors impacting prosumers’ intention for co-production and future participation. It also investigates the moderating role of digital media usage in the relationship between behavioral intention of prosumers for value co-creation and business benefit of the organization. Based on a literature review of co-creation and related theories and a survey, we developed and tested a conceptual model using the PLS-SEM technique. The study also analyzes the moderating impact of digital media by using multi group analysis. This study has also analyzed the impacts of three control variables (i.e., age, gender, and education) on the behavioral intention of the prosumers for value cocreation by means of mediation analysis. We find that the intention of prosumer for co-production as well as intention of prosumers for future participation influences behavioral intention of prosumers for value cocreation which in turn positively impacts business benefits of the organization. The study also finds that usage of digital media has significant moderating impact on the relationship between behavior intention of prosumers for value co-creation and business benefit of the organization

    Identity, Power, and Prestige in Switzerland's Multilingual Education

    Get PDF
    Switzerland is known for its multilingualism, yet not all languages are represented equally in society. The situation is exacerbated by the influx of heritage languages and English through migration and globalization processes which challenge the traditional education system. This study is the first to investigate how schools in Grisons, Fribourg, and Zurich negotiate neoliberal forces leading to a growing necessity of English, a romanticized view on national languages, and the social justice perspective of institutionalizing heritage languages. It uncovers power and legitimacy issues and showcases students' and teachers' complex identities to advocate equitable multilingual education

    Knowledge-based Modelling of Additive Manufacturing for Sustainability Performance Analysis and Decision Making

    Get PDF
    Additiivista valmistusta on pidetty käyttökelpoisena monimutkaisissa geometrioissa, topologisesti optimoiduissa kappaleissa ja kappaleissa joita on muuten vaikea valmistaa perinteisillä valmistusprosesseilla. Eduista huolimatta, yksi additiivisen valmistuksen vallitsevista haasteista on ollut heikko kyky tuottaa toimivia osia kilpailukykyisillä tuotantomäärillä perinteisen valmistuksen kanssa. Mallintaminen ja simulointi ovat tehokkaita työkaluja, jotka voivat auttaa lyhentämään suunnittelun, rakentamisen ja testauksen sykliä mahdollistamalla erilaisten tuotesuunnitelmien ja prosessiskenaarioiden nopean analyysin. Perinteisten ja edistyneiden valmistusteknologioiden mahdollisuudet ja rajoitukset määrittelevät kuitenkin rajat uusille tuotekehityksille. Siksi on tärkeää, että suunnittelijoilla on käytettävissään menetelmät ja työkalut, joiden avulla he voivat mallintaa ja simuloida tuotteen suorituskykyä ja siihen liittyvän valmistusprosessin suorituskykyä, toimivien korkea arvoisten tuotteiden toteuttamiseksi. Motivaation tämän väitöstutkimuksen tekemiselle on, meneillään oleva kehitystyö uudenlaisen korkean lämpötilan suprajohtavan (high temperature superconducting (HTS)) magneettikokoonpanon kehittämisessä, joka toimii kryogeenisissä lämpötiloissa. Sen monimutkaisuus edellyttää monitieteisen asiantuntemuksen lähentymistä suunnittelun ja prototyyppien valmistuksen aikana. Tutkimus hyödyntää tietopohjaista mallinnusta valmistusprosessin analysoinnin ja päätöksenteon apuna HTS-magneettien mekaanisten komponenttien suunnittelussa. Tämän lisäksi, tutkimus etsii mahdollisuuksia additiivisen valmistuksen toteutettavuuteen HTS-magneettikokoonpanon tuotannossa. Kehitetty lähestymistapa käyttää fysikaalisiin kokeisiin perustuvaa tuote-prosessi-integroitua mallinnusta tuottamaan kvantitatiivista ja laadullista tietoa, joka määrittelee prosessi-rakenne-ominaisuus-suorituskyky-vuorovaikutuksia tietyille materiaali-prosessi-yhdistelmille. Tuloksina saadut vuorovaikutukset integroidaan kaaviopohjaiseen malliin, joka voi auttaa suunnittelutilan tutkimisessa ja täten auttaa varhaisessa suunnittelu- ja valmistuspäätöksenteossa. Tätä varten testikomponentit valmistetaan käyttämällä kahta metallin additiivista valmistus prosessia: lankakaarihitsaus additiivista valmistusta (wire arc additive manufacturing) ja selektiivistä lasersulatusta (selective laser melting). Rakenteellisissa sovelluksissa yleisesti käytetyistä metalliseoksista (ruostumaton teräs, pehmeä teräs, luja niukkaseosteinen teräs, alumiini ja kupariseokset) testataan niiden mekaaniset, lämpö- ja sähköiset ominaisuudet. Lisäksi tehdään metalliseosten mikrorakenteen karakterisointi, jotta voidaan ymmärtää paremmin valmistusprosessin parametrien vaikutusta materiaalin ominaisuuksiin. Integroitu mallinnustapa yhdistää kerätyn kokeellisen tiedon, olemassa olevat analyyttiset ja empiiriset vuorovaikutus suhteet, sekä muut tietopohjaiset mallit (esim. elementtimallit, koneoppimismallit) päätöksenteon tukijärjestelmän muodossa, joka mahdollistaa optimaalisen materiaalin, valmistustekniikan, prosessiparametrien ja muitten ohjausmuuttujien valinnan, lopullisen 3d-tulosteun komponentin halutun rakenteen, ominaisuuksien ja suorituskyvyn saavuttamiseksi. Valmistuspäätöksenteko tapahtuu todennäköisyysmallin, eli Bayesin verkkomallin toteuttamisen kautta, joka on vankka, modulaarinen ja sovellettavissa muihin valmistusjärjestelmiin ja tuotesuunnitelmiin. Väitöstyössä esitetyn mallin kyky parantaa additiivisien valmistusprosessien suorituskykyä ja laatua, täten edistää kestävän tuotannon tavoitteita.Additive manufacturing (AM) has been considered viable for complex geometries, topology optimized parts, and parts that are otherwise difficult to produce using conventional manufacturing processes. Despite the advantages, one of the prevalent challenges in AM has been the poor capability of producing functional parts at production volumes that are competitive with traditional manufacturing. Modelling and simulation are powerful tools that can help shorten the design-build-test cycle by enabling rapid analysis of various product designs and process scenarios. Nevertheless, the capabilities and limitations of traditional and advanced manufacturing technologies do define the bounds for new product development. Thus, it is important that the designers have access to methods and tools that enable them to model and simulate product performance and associated manufacturing process performance to realize functional high value products. The motivation for this dissertation research stems from ongoing development of a novel high temperature superconducting (HTS) magnet assembly, which operates in cryogenic environment. Its complexity requires the convergence of multidisciplinary expertise during design and prototyping. The research applies knowledge-based modelling to aid manufacturing process analysis and decision making in the design of mechanical components of the HTS magnet. Further, it explores the feasibility of using AM in the production of the HTS magnet assembly. The developed approach uses product-process integrated modelling based on physical experiments to generate quantitative and qualitative information that define process-structure-property-performance interactions for given material-process combinations. The resulting interactions are then integrated into a graph-based model that can aid in design space exploration to assist early design and manufacturing decision-making. To do so, test components are fabricated using two metal AM processes: wire and arc additive manufacturing and selective laser melting. Metal alloys (stainless steel, mild steel, high-strength low-alloyed steel, aluminium, and copper alloys) commonly used in structural applications are tested for their mechanical-, thermal-, and electrical properties. In addition, microstructural characterization of the alloys is performed to further understand the impact of manufacturing process parameters on material properties. The integrated modelling approach combines the collected experimental data, existing analytical and empirical relationships, and other data-driven models (e.g., finite element models, machine learning models) in the form of a decision support system that enables optimal selection of material, manufacturing technology, process parameters, and other control variables for attaining desired structure, property, and performance characteristics of the final printed component. The manufacturing decision making is performed through implementation of a probabilistic model i.e., a Bayesian network model, which is robust, modular, and can be adapted for other manufacturing systems and product designs. The ability of the model to improve throughput and quality of additive manufacturing processes will boost sustainable manufacturing goals

    Measurement of the Environmental Impact of Materials

    Get PDF
    Throughout their life cycles—from production, usage, through to disposal—materials and products interact with the environment (water, soil, and air). At the same time, they are exposed to environmental influences and, through their emissions, have an impact on the environment, people, and health. Accelerated experimental testing processes can be used to predict the long-term environmental consequences of innovative products before these actually enter the environment. We are living in a material world. Building materials, geosynthetics, wooden toys, soil, nanomaterials, composites, wastes and more are research subjects examined by the authors of this book. The interactions of materials with the environment are manifold. Therefore, it is important to assess the environmental impact of these interactions. Some answers to how this task can be achieved are given in this Special Issue

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Characterising and Modelling Urban Freight in Developing Economies

    Get PDF
    Urban freight systems in developing countries present significant challenges due to their complexity. Authorities often have inadequate institutional structures, making it difficult to identify and implement relevant initiatives. This thesis aims to characterise the systems in developing economies and model freight demand using innovative approaches by considering new attributes, dimensions and alternatives. As a first modelling step, freight (trip) generation was improved by considering spatial and locational determinants, as freight activities are strongly related to spatial and locational characteristics of establishments. Spatial models were developed using a combined spatial autoregressive model (SAR) and geographically weighted regression (GWR) or multiscale GWR (MGWR) (GWR/MGWR-SAR model). This model accounted for non-linearity, spatial heterogeneity and spatial dependency and demonstrated significant improvements (R2 0.29-0.71, RMSE reduced by 71% and AIC value by 56%). Shipment size decisions related to the choice of truck type were strongly timedependent, with commodity type, activities at the trip end, truck body type and industry sector affecting the preferences. Freight demand, including shipment size choices, was influenced by economic fluctuations, with shipment size declining after an economic slowdown. In freight demand modelling, it is imperative to consider economic conditions, especially those in developing countries, which are often susceptible to strong economic fluctuations. The models were applied in ex ante testing of a policy restricting large trucks from entering a city centre, as commonly considered in many developing countries. In tests, the truck restriction was accompanied by single-tier and two-tier distribution systems. The results showed that the two-tier system had a slight advantage over the single-tier system regarding operational expenditure and emission levels. Truck restriction was generally counterproductive, even when accompanied by distribution systems with greater speed and efficiency. We conclude that the models enhance the accurate prediction of freight demand patterns. The ex ante evaluation of policy alternatives supports the decision-making process for urban freight systems of large cities in developing economies. The models allow considering relevant practical, local contextual conditions
    corecore