3 research outputs found

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    Automating Test Case Generation for Android Applications using Model-based Testing

    Get PDF
    Testing of mobile applications (apps) has its quirks as numerous events are required to be tested. Mobile apps testing, being an evolving domain, carries certain challenges that should be accounted for in the overall testing process. Since smartphone apps are moderate in size so we consider that model-based testing (MBT) using state machines and statecharts could be a promising option for ensuring maximum coverage and completeness of test cases. Using model-based testing approach, we can automate the tedious phase of test case generation, which not only saves time of the overall testing process but also minimizes defects and ensures maximum test case coverage and completeness. In this paper, we explore and model the most critical modules of the mobile app for generating test cases to ascertain the efficiency and impact of using model-based testing. Test cases for the targeted model of the application under test were generated on a real device. The experimental results indicate that our framework reduced the time required to execute all the generated test cases by 50%. Experimental setup and results are reported herein
    corecore