764 research outputs found

    Self-Reliance for the Internet of Things: Blockchains and Deep Learning on Low-Power IoT Devices

    Get PDF
    The rise of the Internet of Things (IoT) has transformed common embedded devices from isolated objects to interconnected devices, allowing multiple applications for smart cities, smart logistics, and digital health, to name but a few. These Internet-enabled embedded devices have sensors and actuators interacting in the real world. The IoT interactions produce an enormous amount of data typically stored on cloud services due to the resource limitations of IoT devices. These limitations have made IoT applications highly dependent on cloud services. However, cloud services face several challenges, especially in terms of communication, energy, scalability, and transparency regarding their information storage. In this thesis, we study how to enable the next generation of IoT systems with transaction automation and machine learning capabilities with a reduced reliance on cloud communication. To achieve this, we look into architectures and algorithms for data provenance, automation, and machine learning that are conventionally running on powerful high-end devices. We redesign and tailor these architectures and algorithms to low-power IoT, balancing the computational, energy, and memory requirements.The thesis is divided into three parts:Part I presents an overview of the thesis and states four research questions addressed in later chapters.Part II investigates and demonstrates the feasibility of data provenance and transaction automation with blockchains and smart contracts on IoT devices.Part III investigates and demonstrates the feasibility of deep learning on low-power IoT devices.We provide experimental results for all high-level proposed architectures and methods. Our results show that algorithms of high-end cloud nodes can be tailored to IoT devices, and we quantify the main trade-offs in terms of memory, computation, and energy consumption

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Enhancing Trust in Devices and Transactions of the Internet of Things

    Get PDF
    With the rise of the Internet of Things (IoT), billions of smart embedded devices will interact frequently.These interactions will produce billions of transactions.With IoT, users can utilize their phones, home appliances, wearables, or any other wireless embedded device to conduct transactions.For example, a smart car and a parking lot can utilize their sensors to negotiate the fees of a parking spot.The success of IoT applications highly depends on the ability of wireless embedded devices to cope with a large number of transactions.However, these devices face significant constraints in terms of memory, computation, and energy capacity.With our work, we target the challenges of accurately recording IoT transactions from resource-constrained devices. We identify three domain-problems: a) malicious software modification, b) non-repudiation of IoT transactions, and c) inability of IoT transactions to include sensors readings and actuators.The motivation comes from two key factors.First, with Internet connectivity, IoT devices are exposed to cyber-attacks.Internet connectivity makes it possible for malicious users to find ways to connect and modify the software of a device.Second, we need to store transactions from IoT devices that are owned or operated by different stakeholders.The thesis includes three papers. In the first paper, we perform an empirical evaluation of Secure Boot on embedded devices.In the second paper, we propose IoTLogBlock, an architecture to record off-line transactions of IoT devices.In the third paper, we propose TinyEVM, an architecture to execute off-chain smart contracts on IoT devices with an ability to include sensor readings and actuators as part of IoT transactions

    PriFoB: A Privacy-aware Fog-enhanced Blockchain-based system for Global Accreditation and Credential Verification

    Get PDF
    Trusted online credential management solutions are needed for instant and practical verification. Most of the available frameworks targeting this field violate the privacy of end-users or lack sufficient solutions in terms of security and Quality-of-Service (QoS). In this paper, we propose a Privacy-aware Fog-enhanced Blockchain-based online credential management solution, namely PriFoB. Our proposed solution adopts a public permissioned Blockchain model with different reliable encryption schemes, standardized Zero-Knowledge-Proofs (ZKPs) and Digital Signatures (DSs) within a Fog–Blockchain integrated framework, which is also GDPR compliant. We deploy both the Proof-of-Authority (PoA) and the Signatures-of-Work (SoW) consensus algorithms for efficient and secure handling of Verifiable Credentials (VCs) and global accreditation of VC issuers, respectively. Furthermore, we propose a novel three-dimensional DAG-based model of the Distributed Ledger (3DDL), and provide a ready-to-deploy PriFoB implementation. We discuss insights regarding the utilization and the potential of PriFoB, and evaluate it in terms of security, privacy, latency, throughput and power utilization. We analyze its performance in different layers of a Fog-enabled cloud architecture with simulation and emulation, and we show that PriFoB outperforms several Blockchain-based solutions utilizing Ethereum, Hyperledger Fabric, Hyperledger Besu and Hyperledger Indy platforms. © 2022 The Author(s

    Applications of Blockchain in Business Processes: A Comprehensive Review

    Get PDF
    Blockchain (BC), as an emerging technology, is revolutionizing Business Process Management (BPM) in multiple ways. The main adoption is to serve as a trusted infrastructure to guarantee the trust of collaborations among multiple partners in trustless environments. Especially, BC enables trust of information by using Distributed Ledger Technology (DLT). With the power of smart contracts, BC enforces the obligations of counterparties that transact in a business process (BP) by programming the contracts as transactions. This paper aims to study the state-of-the-art of BC technologies by (1) exploring its applications in BPM with the focus on how BC provides the trust of BPs in their lifecycles; (2) identifying the relations of BPM as the need and BC as the solution with the assessment towards BPM characteristics; (3) discussing the up-to-date progresses of critical BC in BPM; (4) identifying the challenges and research directions for future advancement in the domain. The main conclusions of our comprehensive review are (1) the study of adopting BC in BPM has attracted a great deal of attention that has been evidenced by a rapidly growing number of relevant articles. (2) The paradigms of BPM over Internet of Things (IoT) have been shifted from persistent to transient, from static to dynamic, and from centralized to decentralized, and new enabling technologies are highly demanded to fulfill some emerging functional requirements (FRs) at the stages of design, configuration, diagnosis, and evaluation of BPs in their lifecycles. (3) BC has been intensively studied and proven as a promising solution to assure the trustiness for both of business processes and their executions in decentralized BPM. (4) Most of the reported BC applications are at their primary stages, future research efforts are needed to meet the technical challenges involved in interoperation, determination of trusted entities, confirmation of time-sensitive execution, and support of irreversibility

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable

    REA2: A unified formalisation of the Resource-Event-Agent Ontology

    Get PDF
    Through a proof of concept in SWI-Prolog, this paper demonstrates a business transaction model by which the trading partners can derive their own, personal perspective from shared data. The demonstration is an innovative formalisation of the Resource-Event-Agent (REA) ontology as it allows for switching viewpoints in real-time between one trading-partner’s perspective and that of a trading-partner with an opposing view (i.e. customer or supplier), or a trading-partner independent perspective (e.g. trusted third-party). The business transaction model is achieved by uniting REA with the Open-EDI Business Transaction Ontology (OeBTO). The resulting unified formalisation of the REA ontology (REA2) also highlights implications for the future development of a) enterprise information systems (EIS) in the cloud, b) social-mediabased EIS, c) blockchain EIS, and d) EIS interoperability across business paradigms. The EIS interoperability such as between traditional EIS (which typically uses a tradingpartner perspective), and EIS for the collaborative economy (which typically uses a trading-partner independent perspective) is particularly highlighted as it becomes much more transparent than previously

    Blockchain's adoption in IoT: The challenges, and a way forward

    Full text link
    © 2018 Elsevier Ltd The underlying technology of Bitcoin is blockchain, which was initially designed for financial value transfer only. Nonetheless, due to its decentralized architecture, fault tolerance and cryptographic security benefits such as pseudonymous identities, data integrity and authentication, researchers and security analysts around the world are focusing on the blockchain to resolve security and privacy issues of IoT. However, presently, not much work has been done to assess blockchain's viability for IoT and the associated challenges. Hence, to arrive at intelligible conclusions, this paper carries out a systematic study of the peculiarities of the IoT environment including its security and performance requirements and progression in blockchain technologies. We have identified the gaps by mapping the security and performance benefits inferred by the blockchain technologies and some of the blockchain-based IoT applications against the IoT requirements. We also discovered some practical issues involved in the integration of IoT devices with the blockchain. In the end, we propose a way forward to resolve some of the significant challenges to the blockchain's adoption in IoT
    • …
    corecore