9,184 research outputs found

    Advances in optimal routing through computer networks

    Get PDF
    The optimal routing problem is defined. Progress in solving the problem during the previous decade is reviewed, with special emphasis on technical developments made during the last few years. The relationships between the routing, the throughput, and the switching technology used are discussed and their future trends are reviewed. Economic aspects are also briefly considered. Modern technical approaches for handling the routing problems and, more generally, the flow control problems are reviewed

    Economic Optimization of Fiber Optic Network Design in Anchorage

    Get PDF
    Presented to the Faculty of the University of Alaska Anchorage in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE, ENGINEERING MANAGEMENTThe wireline telecommunications industry is currently involved in an evolution. Growing bandwidth demands are putting pressure on the capabilities of outdated copper based networks. These demands are being meet by replacing these copper based networks with fiber optic networks. Unfortunately, telecommunications decision makers are tasked with figuring out how best to deploy these networks with little ability to plan, organize, lead, or control these large projects. This project introduces a novel approach to designing fiber optic access networks. By leveraging well known clustering and routing techniques to produce sound network design, decision makers will better understand how to divide service areas, where to place fiber, and how much fiber should be placed. Combining this output with other typical measures of costs and revenue, the decision maker will also be able to focus on the business areas that will provide the best outcome when undertaking this transformational evolution of physical networks.Introduction / Background / Clustering, Routing, and the Model / Results and Analysis / Conclusion / Reference

    Communications network design and costing model technical manual

    Get PDF
    This computer model provides the capability for analyzing long-haul trunking networks comprising a set of user-defined cities, traffic conditions, and tariff rates. Networks may consist of all terrestrial connectivity, all satellite connectivity, or a combination of terrestrial and satellite connectivity. Network solutions provide the least-cost routes between all cities, the least-cost network routing configuration, and terrestrial and satellite service cost totals. The CNDC model allows analyses involving three specific FCC-approved tariffs, which are uniquely structured and representative of most existing service connectivity and pricing philosophies. User-defined tariffs that can be variations of these three tariffs are accepted as input to the model and allow considerable flexibility in network problem specification. The resulting model extends the domain of network analysis from traditional fixed link cost (distance-sensitive) problems to more complex problems involving combinations of distance and traffic-sensitive tariffs

    Optimization of transport protocols with path-length constraints in complex networks

    Get PDF
    We propose a protocol optimization technique that is applicable to both weighted or unweighted graphs. Our aim is to explore by how much a small variation around the Shortest Path or Optimal Path protocols can enhance protocol performance. Such an optimization strategy can be necessary because even though some protocols can achieve very high traffic tolerance levels, this is commonly done by enlarging the path-lengths, which may jeopardize scalability. We use ideas borrowed from Extremal Optimization to guide our algorithm, which proves to be an effective technique. Our method exploits the degeneracy of the paths or their close-weight alternatives, which significantly improves the scalability of the protocols in comparison to Shortest Paths or Optimal Paths protocols, keeping at the same time almost intact the length or weight of the paths. This characteristic ensures that the optimized routing protocols are composed of paths that are quick to traverse, avoiding negative effects in data communication due to path-length increases that can become specially relevant when information losses are present.Comment: 8 pages, 8 figure

    Steady state analysis of balanced-allocation routing

    Full text link
    We compare the long-term, steady-state performance of a variant of the standard Dynamic Alternative Routing (DAR) technique commonly used in telephone and ATM networks, to the performance of a path-selection algorithm based on the "balanced-allocation" principle; we refer to this new algorithm as the Balanced Dynamic Alternative Routing (BDAR) algorithm. While DAR checks alternative routes sequentially until available bandwidth is found, the BDAR algorithm compares and chooses the best among a small number of alternatives. We show that, at the expense of a minor increase in routing overhead, the BDAR algorithm gives a substantial improvement in network performance, in terms both of network congestion and of bandwidth requirement.Comment: 22 pages, 1 figur

    Fast multipole networks

    Full text link
    Two prerequisites for robotic multiagent systems are mobility and communication. Fast multipole networks (FMNs) enable both ends within a unified framework. FMNs can be organized very efficiently in a distributed way from local information and are ideally suited for motion planning using artificial potentials. We compare FMNs to conventional communication topologies, and find that FMNs offer competitive communication performance (including higher network efficiency per edge at marginal energy cost) in addition to advantages for mobility
    corecore