1,129 research outputs found

    CCNN: An Artificial Intelligent based Classifier to Credit Card Fraud Detection System with Optimized Cognitive Learning Model

    Get PDF
    Nowadays digital transactions play a vital role in money transaction processes. Last 5 years statistical report portrays the growth of internet money transaction especially credit card and unified payments interface. Mean time increasing numerous banking threats and digital transaction fraud rates also growing significantly. Data engineering techniques provide ultra supports to detect credit card forgery problems in online and offline mode transactions. This credit card fraud detection (CCFD) and prevention-based data processing issues raising because of two major reasons first, classification rate of legitimate and forgery uses is frequently changing, and next one is fraud detection dataset values are vastly asymmetric. Through this research work investigating performance of various existing classifier with our proposed cognitive convolutional neural network (CCNN) classifier. Existing classifiers like Logistic Regression (LR), K-nearest neighbor (KNN), Decision Tree (DT) and Support Vector Machine (SVM). These models are facing various challenges of low performance rate and high complexity because of low hit rate and accuracy. Through this research work we introduce cognitive learning-based CCNN classifier methodology with artificial intelligence for achieve maximum accuracy rate and minimal complexity issues. For experimental data analysis uses dataset of credit card transactions attained from specific region cardholders containing 284500 transactions and its various features. Also, this dataset contains unstructured and non-dimensional data are converted into structured data with the help of over sample and under sample method. Performance analysis shows proposed CCNN classifier model provide significant improvement on accuracy, specificity, sensitivity and hit rate. The results are shown in comparison. After cross-validation, the accuracy of the CCNN classification algorithm model for transaction fraudulent detection archived 99% which using the over-sampling model

    A Novel Deep Learning-Based Identification of Credit Card Frauds in Banks for Cyber Security Applications

    Get PDF
    Due to the widespread use of constantly evolving internet technology and the increased frequency of cyber-attacks and crimes, cyber security is crucial for the banking sector. One of the biggest dangers confronting the banking sector globally is credit card (CC) fraud. It is becoming a serious issue and is growing rapidly, especially as the number of financial transactions utilizing CC keeps rising. The prevalence and growth of Internet banking have enhanced CC fraud identification. Finding fraudulent transactions of CC has become a major issue for internet buyers. In this study, an entirely novel deep learning (DL) algorithm is suggested for use in cyber security applications to identify CC thefts in the banking industry. We use a collection of significantly skewed CC fraud data sets to apply the proposed Multi-Gradient Whale Optimized Convolutional Neural Network (MW-CNN). The efficacy of the suggested methodis assessed depending on the performance evaluation criteria and comparing it with traditional techniques

    xFraud: Explainable Fraud Transaction Detection

    Full text link
    At online retail platforms, it is crucial to actively detect the risks of transactions to improve customer experience and minimize financial loss. In this work, we propose xFraud, an explainable fraud transaction prediction framework which is mainly composed of a detector and an explainer. The xFraud detector can effectively and efficiently predict the legitimacy of incoming transactions. Specifically, it utilizes a heterogeneous graph neural network to learn expressive representations from the informative heterogeneously typed entities in the transaction logs. The explainer in xFraud can generate meaningful and human-understandable explanations from graphs to facilitate further processes in the business unit. In our experiments with xFraud on real transaction networks with up to 1.1 billion nodes and 3.7 billion edges, xFraud is able to outperform various baseline models in many evaluation metrics while remaining scalable in distributed settings. In addition, we show that xFraud explainer can generate reasonable explanations to significantly assist the business analysis via both quantitative and qualitative evaluations.Comment: This is the extended version of a full paper to appear in PVLDB 15 (3) (VLDB 2022

    Neural network algorithms for fraud detection: a comparison of the complementary techniques in the last five years

    Get PDF
    Purpose: The purpose of this research is to analyse the complementary updates and techniques in the optimization of the results of neural network algorithms (NNA) in order to detect financial fraud, providing a comparison of the trend, addressed field and efficiency of the models developed in current research. Design/Methodology/Approach: The author performed a qualitative study where a compilation and selection of literature was carried out, in terms of defining the conceptual analysis, database and search strategy, consequently selecting 32 documents. Subsequently, the comparative analysis was carried out, in turn being able to determine the most used and efficient complementary technique in the last five years. Findings: The results of the comparative analysis depicted that in 2019 there was a greater impact of research based on NNA with 11 studies. 27 complementary updates and techniques were identified related to NNA, where deep neural network algorithms (DNN), convolutional neural network (CNN) and SMOTE neural network. Finally, the evaluation of effectiveness in the collected techniques achieved an average accuracy ranging between 79% and 98.74% with an overall accuracy value of 91.32%. Originality/Value: Being a technique which is applied and compared in diverse studies, ANNs uses a wide range of mechanisms concerning training and classification of data. According to the findings of this research, the complementary techniques contribute to the progress and optimization of algorithms regarding financial fraud detection, having a high degree of effectiveness concerning on-line and credit card fraud

    HF-SCA: Hands-Free Strong Customer Authentication Based on a Memory-Guided Attention Mechanisms

    Get PDF
    Strong customer authentication (SCA) is a requirement of the European Union Revised Directive on Payment Services (PSD2) which ensures that electronic payments are performed with multifactor authentication. While increasing the security of electronic payments, the SCA impacted seriously on the shopping carts abandonment: an Italian bank computed that 22% of online purchases in the first semester of 2021 did not complete because of problems with the SCA. Luckily, the PSD2 allows the use of transaction risk analysis tool to exempt the SCA process. In this paper, we propose an unsupervised novel combination of existing machine learning techniques able to determine if a purchase is typical or not for a specific customer, so that in the case of a typical purchase the SCA could be exempted. We modified a well-known architecture (U-net) by replacing convolutional blocks with squeeze-and-excitation blocks. After that, a memory network was added in a latent space and an attention mechanism was introduced in the decoding side of the network. The proposed solution was able to detect nontypical purchases by creating temporal correlations between transactions. The network achieved 97.7% of AUC score over a well-known dataset retrieved online. By using this approach, we found that 98% of purchases could be executed by securely exempting the SCA, while shortening the customer’s journey and providing an elevated user experience. As an additional validation, we developed an Alexa skill for Amazon smart glasses which allows a user to shop and pay online by merely using vocal interaction, leaving the hands free to perform other activities, for example driving a car
    • …
    corecore