29,449 research outputs found

    A Mobile Transient Internet Architecture

    Get PDF
    This paper describes a new architecture for transient mobile networks destined to merge existing and future network architectures, communication implementations and protocol operations by introducing a new paradigm to data delivery and identification. The main goal of our research is to enable seamless end-to-end communication between mobile and stationary devices across multiple networks and through multiple communication environments. The architecture establishes a set of infrastructure components and protocols that set the ground for a Persistent Identification Network (PIN). The basis for the operation of PIN is an identification space consisting of unique location independent identifiers similar to the ones implemented in the Handle system. Persistent Identifiers are used to identify and locate Digital Entities which can include devices, services, users and even traffic. The architecture establishes a primary connection independent logical structure that can operate over conventional networks or more advanced peer-to-peer aggregation networks. Communication is based on routing pools and novel protocols for routing data across several abstraction levels of the network, regardless of the end-points’ current association and state. The architecture also postulates a new type of network referred to as the Green Network. The Green Network has protocols to coordinate routing traffic and to allow for the identification and authentication of devices, services, users and content characterized as Digital Entities. Transmission is assumed to initiate and terminate at transient physical locations. The network implements every reasonable effort to coordinate a prompt delivery to the transient end-points using whatever means available. This paper is a conceptual logical model of the intended architecture and specifics about its particular components and their implementations will be discussed in future papers

    An Application of the Mobile Transient Internet Architecture to IP Mobility and Inter-Operability

    Get PDF
    We introduce an application of a mobile transient network architecture on top of the current Internet. This paper is an application extension to a conceptual mobile network architecture. It attempts to specifically reinforce some of the powerful notions exposed by the architecture from an application perspective. Of these notions, we explore the network expansion layer, an overlay of components and services, that enables a persistent identification network and other required services. The overlay abstraction introduces several benefits of which mobility and communication across heterogenous network structures are of interest to this paper. We present implementations of several components and protocols including gateways, Agents and the Open Device Access Protocol. Our present identification network implementation exploits the current implementation of the Handle System through the use of distributed, global and persistent identifiers called handles. Handles are used to identify and locate devices and services abstracting any physical location or network association from the communicating ends. A communication framework is finally demonstrated that would allow for mobile devices on the public Internet to have persistent identifiers and thus be persistently accessible either directly or indirectly. This application expands IP inter-operability beyond its current boundaries

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    A Dynamic Application Partitioning and Offloading Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents

    Get PDF
    Mobile cloud computing has emerged as a prominent area of research, a natural extension of cloud computing that proposes to offer solutions for enhancing the capabilities of smart mobile devices commonly plagued by resource constraints. As one of its promising models, transient clouds aim to address the internet connectivity shortfall inherent in most solutions through the formation of ad hoc networks by devices in close proximity, then the offloading some computations (Cyber Foraging) to the created cloud. However, transient clouds, at their current state, have several limitations, concerning their expansion on a local network having a large number of devices and the management of the instability of the network due to the constant mobility of the devices. Another issue is the fact code partitioning and offloading are not addressed to fit the need of such networks, thereby rendering the distributed computing mechanism barely efficient for the Transient Cloud. In this study, we propose a transient cloud-based framework that exploits the use of multi-agent systems, enabling a dynamic partitioning and offloading of code, and facilitating the movement and the execution of code partition packets in a multi-hop ad-hoc mesh network. When created and deployed, these intelligent mobile agents operate independently or collaboratively and adapt to the continual entry and exit of devices in the neighbourhood. The integration of these trending concepts in distributed computing within a framework offers a new architecture for resource-sharing among cooperating devices that addresses the varied issues that arise in dynamic environments
    • …
    corecore