3 research outputs found

    DeepFN: Towards Generalizable Facial Action Unit Recognition with Deep Face Normalization

    Full text link
    Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to unseen people and demographics. This work conducts an in-depth analysis of performance across several dimensions: individuals(40 subjects), genders (male and female), skin types (darker and lighter), and databases (BP4D and DISFA). To help suppress the variance in data, we use the notion of self-supervised denoising autoencoders to design a method for deep face normalization(DeepFN) that transfers facial expressions of different people onto a common facial template which is then used to train and evaluate facial action recognition models. We show that person-independent models yield significantly lower performance (55% average F1 and accuracy across 40 subjects) than person-dependent models (60.3%), leading to a generalization gap of 5.3%. However, normalizing the data with the newly introduced DeepFN significantly increased the performance of person-independent models (59.6%), effectively reducing the gap. Similarly, we observed generalization gaps when considering gender (2.4%), skin type (5.3%), and dataset (9.4%), which were significantly reduced with the use of DeepFN. These findings represent an important step towards the creation of more generalizable facial action unit recognition systems

    A Mixture of Personalized Experts for Human Affect Estimation

    No full text
    We investigate the personalization of deep convolutional neural networks for facial expression analysis from still images. While prior work has focused on population-based (“one-size-fits-all”) approaches, we formulate and construct personalized models via a mixture of experts and supervised domain adaptation approach, showing that it improves greatly upon non-personalized models. Our experiments demonstrate the ability of the model personalization to quickly and effectively adapt to limited amounts of target data. We also provide a novel training methodology and architecture for creating personalized machine learning models for more effective analysis of emotion state.European Union (Grant H2020)Marie Curie Action (Award 701236
    corecore