3 research outputs found

    Design and Realization of a Fault-Tolerant 90nm Cryptographic Engine Capable of Performing under Massive Defect Density

    Get PDF
    This paper presents a new approach for assessing the reliability of nanometer-scale devices prior to fabrication and a practical reliability architecture realization. A four-layer architecture exhibiting a large immunity to permanent as well as random failures is used. Characteristics of the averaging/thresholding layer are emphasized. A complete tool based on Monte Carlo simulation for a-priori functional fault tolerance analysis was used for analysis of distinctive cases and topologies. A full chip CMOS integrated design of the 128-bit AES cryptography algorithm with multiple cores that incorporate reliability architectures is shown

    A Methodology for Reliability Enhancement of Nanometer- Scale Digital Systems Based on A-Priori Functional Fault- Tolerance Analysis

    No full text
    This paper presents a new approach for monitoring and estimating device reliability of nanometer-scale devices prior to fabrication. A four-layer architecture exhibiting a large immunity to permanent as well as random failures is used. A complete tool for a-priori functional fault tolerance analysis was developed. It is a statistical Monte Carlo based tool that induces different failure models, and does subsequent evaluation of system reliability under realistic constraints. A structured fault modeling architecture is also proposed, which is together with the tool a part of the new design method where reliability is considered as a central focus from an early development stage
    corecore