434 research outputs found

    Structural indicators for effective quality assurance of snomed ct

    Get PDF
    The Standardized Nomenclature of Medicine -- Clinical Terms (SNOMED CT -- further abbreviated as SCT) has been endorsed as a premier clinical terminology by many national and international organizations. The US Government has chosen SCT to play a significant role in its initiative to promote Electronic Health Record (EH R) country-wide. However, there is evidence suggesting that, at the moment, SCT is not optimally modeled for its intended use by healthcare practitioners. There is a need to perform quality assurance (QA) of SCT to help expedite its use as a reference terminology for clinical purposes as planned for EH R use. The central theme of this dissertation is to define a group-based auditing methodology to effectively identify concepts of SCT that require QA. As such, similarity sets are introduced which are groups of concepts that are lexically identical except for one word. Concepts in a similarity set are expected to be modeled in a consistent way. If not, the set is considered to be inconsistent and submitted for review by an auditor. Initial studies found 38% of such sets to be inconsistent. The effectiveness of these sets is further improved through the use of three structural indicators. Using such indicators as the number of parents, relationships and role groups, up to 70% of the similarity sets and 32.6% of the concepts are found to exhibit inconsistencies. Furthermore, positional similarity sets, which are similarity sets with the same position of the differing word in the concept’s terms, are introduced to improve the likelihood of finding errors at the concept level. This strictness in the position of the differing word increases the lexical similarity between the concepts of a set thereby increasing the contrast between lexical similarities and modeling differences. This increase in contrast increases the likelihood of finding inconsistencies. The effectiveness of positional similarity sets in finding inconsistencies is further improved by using the same three structural indicators as discussed above in the generation of these sets. An analysis of 50 sample sets with differences in the number of relationships reveal 41.6% of the concepts to be inconsistent. Moreover, a study is performed to fully automate the process of suggesting attributes to enhance the modeling of SCT concepts using positional similarity sets. A technique is also used to automatically suggest the corresponding target values. An analysis of 50 sample concepts show that, of the 103 suggested attributes, 67 are manually confirmed to be correct. Finally, a study is conducted to examine the readiness of SCT problem list (PL) to support meaningful use of EHR. The results show that the concepts in PL suffer from the same issues as general SCT concepts, although to a slightly lesser extent, and do require further QA efforts. To support such efforts, structural indicators in the form of the number of parents and the number of words are shown to be effective in ferreting out potentially problematic concepts in which QA efforts should be focused. A structural indicator to find concepts with synonymy problems is also presented by finding pairs of SCT concepts that map to the same UMLS concept

    A method for encoding clinical datasets with SNOMED CT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples available to show how this can be done and the issues involved. This paper describes a heuristic method that can be used to encode clinical terms in SNOMED CT and an illustration of how it was applied to encode an existing palliative care dataset.</p> <p>Methods</p> <p>The encoding process involves: identifying input data items; cleaning the data items; encoding the cleaned data items; and exporting the encoded terms as output term sets. Four outputs are produced: the SNOMED CT reference set; interface terminology set; SNOMED CT extension set and unencodeable term set.</p> <p>Results</p> <p>The original palliative care database contained 211 data elements, 145 coded values and 37,248 free text values. We were able to encode ~84% of the terms, another ~8% require further encoding and verification while terms that had a frequency of fewer than five were not encoded (~7%).</p> <p>Conclusions</p> <p>From the pilot, it would seem our SNOMED CT encoding method has the potential to become a general purpose terminology encoding approach that can be used in different clinical systems.</p

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    Formal nursing terminology systems: a means to an end

    Get PDF
    In response to the need to support diverse and complex information requirements, nursing has developed a number of different terminology systems. The two main kinds of systems that have emerged are enumerative systems and combinatorial systems, although some systems have characteristics of both approaches. Differences in the structure and content of terminology systems, while useful at a local level, prevent effective wider communication, information sharing, integration of record systems, and comparison of nursing elements of healthcare information at a more global level. Formal nursing terminology systems present an alternative approach. This paper describes a number of recent initiatives and explains how these emerging approaches may help to augment existing nursing terminology systems and overcome their limitations through mediation. The development of formal nursing terminology systems is not an end in itself and there remains a great deal of work to be done before success can be claimed. This paper presents an overview of the key issues outstanding and provides recommendations for a way forward

    A Core Reference Hierarchical Primitive Ontology for Electronic Medical Records Semantics Interoperability

    Get PDF
    Currently, electronic medical records (EMR) cannot be exchanged among hospitals, clinics, laboratories, pharmacies, and insurance providers or made available to patients outside of local networks. Hospital, laboratory, pharmacy, and insurance provider legacy databases can share medical data within a respective network and limited data with patients. The lack of interoperability has its roots in the historical development of electronic medical records. Two issues contribute to interoperability failure. The first is that legacy medical record databases and expert systems were designed with semantics that support only internal information exchange. The second is ontological commitment to the semantics of a particular knowledge representation language formalism. This research seeks to address these interoperability failures through demonstration of the capability of a core reference, hierarchical primitive ontological architecture with concept primitive attributes definitions to integrate and resolve non-interoperable semantics among and extend coverage across existing clinical, drug, and hospital ontologies and terminologies

    Using structural and semantic methodologies to enhance biomedical terminologies

    Get PDF
    Biomedical terminologies and ontologies underlie various Health Information Systems (HISs), Electronic Health Record (EHR) Systems, Health Information Exchanges (HIEs) and health administrative systems. Moreover, the proliferation of interdisciplinary research efforts in the biomedical field is fueling the need to overcome terminological barriers when integrating knowledge from different fields into a unified research project. Therefore well-developed and well-maintained terminologies are in high demand. Most of the biomedical terminologies are large and complex, which makes it impossible for human experts to manually detect and correct all errors and inconsistencies. Automated and semi-automated Quality Assurance methodologies that focus on areas that are more likely to contain errors and inconsistencies are therefore important. In this dissertation, structural and semantic methodologies are used to enhance biomedical terminologies. The dissertation work is divided into three major parts. The first part consists of structural auditing techniques for the Semantic Network of the Unified Medical Language System (UMLS), which serves as a vocabulary knowledge base for biomedical research in various applications. Research techniques are presented on how to automatically identify and prevent erroneous semantic type assignments to concepts. The Web-based adviseEditor system is introduced to help UMLS editors to make correct multiple semantic type assignments to concepts. It is made available to the National Library of Medicine for future use in maintaining the UMLS. The second part of this dissertation is on how to enhance the conceptual content of SNOMED CT by methods of semantic harmonization. By 2015, SNOMED will become the standard terminology for EH R encoding of diagnoses and problem lists. In order to enrich the semantics and coverage of SNOMED CT for clinical and research applications, the problem of semantic harmonization between SNOMED CT and six reference terminologies is approached by 1) comparing the vertical density of SNOM ED CT with the reference terminologies to find potential concepts for export and import; and 2) categorizing the relationships between structurally congruent concepts from pairs of terminologies, with SNOMED CT being one terminology in the pair. Six kinds of configurations are observed, e.g., alternative classifications, and suggested synonyms. For each configuration, a corresponding solution is presented for enhancing one or both of the terminologies. The third part applies Quality Assurance techniques based on “Abstraction Networks” to biomedical ontologies in BioPortal. The National Center for Biomedical Ontology provides B ioPortal as a repository of over 350 biomedical ontologies covering a wide range of domains. It is extremely difficult to design a new Quality Assurance methodology for each ontology in BioPortal. Fortunately, groups of ontologies in BioPortal share common structural features. Thus, they can be grouped into families based on combinations of these features. A uniform Quality Assurance methodology design for each family will achieve improved efficiency, which is critical with the limited Quality Assurance resources available to most ontology curators. In this dissertation, a family-based framework covering 186 BioPortal ontologies and accompanying Quality Assurance methods based on abstraction networks are presented to tackle this problem
    • …
    corecore