243,618 research outputs found

    A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems.

    Get PDF
    International audienceThe paper presents a methodology and supporting tools for developing component-based embedded systems running on resource- limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of func tionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems.

    Get PDF
    International audienceThe paper presents a methodology and supporting tools for developing component-based embedded systems running on resource- limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of func tionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    A methodology and supporting tools for the development of component-based embedded systems

    Get PDF
    The paper presents a methodology and supporting tools for developing component-based embedded systems running on resource-limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of functionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    Virtual Prototyping Methodology for Power Automation Cyber-Physical-Systems

    Get PDF
    In this thesis, the author proposes a circular system development model which considers all the stages in a typical development process for industrial systems. In particular, the present work shows that the use of virtual prototyping at early stages of the system development may reduce the overall design and verification effort by allowing the exploration of the complete system architecture, and uncovering integration issues early on. The modeling techniques of this research are based on VHDL-AMS, yet supporting other modeling languages such as C/C++, SPICE, and Verilog-AMS, together with integrated simulation tools. Contrasting with conventional approaches, it is shown that the proposed methodology is adapted for small-scale Cyber-Physical Systems (CPS) design and verification thanks to the modularity and scalability of the modeling approach. The proposed modeling techniques enable seamlessly the CPS design together with the implementation of their subsystems. In particular, the contribution of this work improves the virtual prototyping approach that has been successfully used during the development of smart electrical sensors and monitoring equipment for high and medium voltage applications. The design of the measurement and self-calibration circuits of a medium voltage current sensor based on the Rogowski coil transducer is presented as an example. The proposed small-scale CPS design methodology based on virtual prototyping, namely VP-based design methodology, uses important theoretical concepts from layered design, component-based design, and platform-based design. These foundations are the basis to build a modeling methodology that provides a vehicle that can be used to improve system verification towards correct-by-design systems. The main contributions of this research are: the re-definition of the system development lifecycle by using a virtual prototyping methodology; the design and implementation of a model library that maximizes the reuse of computational models and their related IP; and a set of VHDL-AMS modeling guidelines established with the purpose of improving the modularity and scalability of virtual prototypes. These elements are key for supporting the introduction of virtual prototyping into industrial companies that can thoroughly profit from this approach, but cannot commit a specific team to the creation, support, and maintenance of computational models and its dedicated infrastructure. Thanks to the progressive nature of the proposed methodology, virtual prototypes can indeed be introduced with relatively low initial effort and enhanced over time. The presented methodology and its infrastructure may grow into a bidirectional communication medium between non-expert system designers (i.e. system architects and virtual integrators) and domain specialists such as mechanical designers, power electrical designers, embedded-electronics designers, and software designers. The proposed design methodology advocates the reduction of the CPS design complexity by the implementation of a meet-in-the-middle approach for system-level modeling. In this direction, the modeling techniques introduced in this work facilitate the architectural design space exploration, critical cross-domain variable analysis (especially important in the component interfaces), and system-level optimization and verification

    Integrating IVHM and Asset Design

    Get PDF
    Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable effective and efficient maintenance and operation of the target vehicle. It accounts for the collection of data, conducting analysis, and supporting the decision-making process for sustainment and operation. The design of IVHM systems endeavours to account for all causes of failure in a disciplined, systems engineering, manner. With industry striving to reduce through-life cost, IVHM is a powerful tool to give forewarning of impending failure and hence control over the outcome. Benefits have been realised from this approach across a number of different sectors but, hindering our ability to realise further benefit from this maturing technology, is the fact that IVHM is still treated as added on to the design of the asset, rather than being a sub-system in its own right, fully integrated with the asset design. The elevation and integration of IVHM in this way will enable architectures to be chosen that accommodate health ready sub-systems from the supply chain and design trade-offs to be made, to name but two major benefits. Barriers to IVHM being integrated with the asset design are examined in this paper. The paper presents progress in overcoming them, and suggests potential solutions for those that remain. It addresses the IVHM system design from a systems engineering perspective and the integration with the asset design will be described within an industrial design process
    corecore