4 research outputs found

    Individual stable space : an approach to face recognition under uncontrolled conditions

    Full text link
    There usually exist many kinds of variations in face images taken under uncontrolled conditions, such as changes of pose, illumination, expression, etc. Most previous works on face recognition (FR) focus on particular variations and usually assume the absence of others. Instead of such a ldquodivide and conquerrdquo strategy, this paper attempts to directly address face recognition under uncontrolled conditions. The key is the individual stable space (ISS), which only expresses personal characteristics. A neural network named ISNN is proposed to map a raw face image into the ISS. After that, three ISS-based algorithms are designed for FR under uncontrolled conditions. There are no restrictions for the images fed into these algorithms. Moreover, unlike many other FR techniques, they do not require any extra training information, such as the view angle. These advantages make them practical to implement under uncontrolled conditions. The proposed algorithms are tested on three large face databases with vast variations and achieve superior performance compared with other 12 existing FR techniques.<br /

    Robust approaches for face recognition

    Full text link
    This thesis gave answers to a number of important questions regarding face classification. Via this research, new methods were introduced to represent four facial attributes (three of them related to the demographic information of the human face: gender, age and race) and the fourth one related to facial expression. It stated that, discriminative facial features regarding to demographic information (gender, age and race) and expression information can be obtained by applying texture analysis techniques to the polar raster sampled images. In addition, it is found that, multi-label classification (MLC) is more suitable in the real world as a human face can be associated with multiple labels
    corecore