178 research outputs found

    Modelling the interpretation of digital mammography using high order statistics and deep machine learning

    Get PDF
    Visual search is an inhomogeneous, yet efficient sampling process accomplished by the saccades and the central (foveal) vision. Areas that attract the central vision have been studied for errors in interpretation of medical images. In this study, we extend existing visual search studies to understand features of areas that receive direct visual attention and elicit a mark by the radiologist (True and False Positive decisions) from those that elicit a mark but were captured by the peripheral vision. We also investigate if there are any differences between these areas and those that are never fixated by radiologists. Extending these investigations, we further explore the possibility of modelling radiologists’ search behavior and their interpretation of mammograms using deep machine learning techniques. We demonstrated that energy profiles of foveated (FC), peripherally fixated (PC), and never fixated (NFC) areas are distinct. It was shown that FCs are selected on the basis of being most informative. Never fixated regions were found to be least informative. Evidences that energy profiles and dwell time of these areas influence radiologists’ decisions (and confidence in such decisions) were also shown. High-order features provided additional information to the radiologists, however their effect on decision (and confidence in such decision) was not significant. We also showed that deep-convolution neural network can successfully be used to model radiologists’ attentional level, decisions and confidence in their decisions. High accuracy and high agreement (between true and predicted values) in such predictions can be achieved in modelling attentional level (accuracy: 0.90, kappa: 0.82) and decisions (accuracy: 0.92, kappa: 0.86) of radiologists. Our results indicated that an ensembled model for radiologist’s search behavior and decision can successfully be built. Convolution networks failed to model missed cancers however

    Imaging of the Breast

    Get PDF
    Early detection of breast cancer combined with targeted therapy offers the best outcome for breast cancer patients. This volume deal with a wide range of new technical innovations for improving breast cancer detection, diagnosis and therapy. There is a special focus on improvements in mammographic image quality, image analysis, magnetic resonance imaging of the breast and molecular imaging. A chapter on targeted therapy explores the option of less radical postoperative therapy for women with early, screen-detected breast cancers

    Optimised Mammogram Displays for Improved Breast Cancer Detection

    Get PDF
    In current mammography practice, radiologists typically view mammograms in a symmetric, side-by-side, configuration in the belief that abnormalities will be made salient because they break the perceived symmetry. The literature on the use of symmetry as an aid to signal detection is limited and this thesis has taken a psychophysical approach to investigate the radiologist’s task of detecting a small mass (a blob) in paired mammogram backgrounds. Initial experiments used Gaussian white noise and synthetic mammogram backgrounds to test observer performance for the radiologist’s task using symmetric (side-by-side) displays and animated (the two images of a pair alternated sequentially in the same location) displays. The use of animated displays was then tested using real mammogram backgrounds in the subsequent experiments. The results showed that side-by-side presentation of paired images does not provide any benefit for the detection of a blob, whereas, alternated presentation enabled the observer to use the correlation present between the paired images to improve detection performance. The effect of alternation was not evident when applied to the task of detecting a small mass in real mammogram pairs and subsequent investigation suggested that the loss of effect resulted from the lack of scale invariance of real images. This meant that, regardless of the level of global correlation between two images, the localised correlation, at a region size reflecting the visual angle subtended by the fovea, was much lower. Thus, decorrelation by the visual system was ineffective and performance for the detection of a blob in the paired images was also ineffective. This thesis suggests that, whilst animated displays can be a powerful tool for the identification of differences between paired images, the underpinning mechanism of decorrelation makes them unsuited for mammograms where scale invariance means that correlation at local levels is a fraction of the global correlation level
    • …
    corecore