14,964 research outputs found

    An Efficient Boosted Classifier Tree-Based Feature Point Tracking System for Facial Expression Analysis

    Get PDF
    The study of facial movement and expression has been a prominent area of research since the early work of Charles Darwin. The Facial Action Coding System (FACS), developed by Paul Ekman, introduced the first universal method of coding and measuring facial movement. Human-Computer Interaction seeks to make human interaction with computer systems more effective, easier, safer, and more seamless. Facial expression recognition can be broken down into three distinctive subsections: Facial Feature Localization, Facial Action Recognition, and Facial Expression Classification. The first and most important stage in any facial expression analysis system is the localization of key facial features. Localization must be accurate and efficient to ensure reliable tracking and leave time for computation and comparisons to learned facial models while maintaining real-time performance. Two possible methods for localizing facial features are discussed in this dissertation. The Active Appearance Model is a statistical model describing an object\u27s parameters through the use of both shape and texture models, resulting in appearance. Statistical model-based training for object recognition takes multiple instances of the object class of interest, or positive samples, and multiple negative samples, i.e., images that do not contain objects of interest. Viola and Jones present a highly robust real-time face detection system, and a statistically boosted attentional detection cascade composed of many weak feature detectors. A basic algorithm for the elimination of unnecessary sub-frames while using Viola-Jones face detection is presented to further reduce image search time. A real-time emotion detection system is presented which is capable of identifying seven affective states (agreeing, concentrating, disagreeing, interested, thinking, unsure, and angry) from a near-infrared video stream. The Active Appearance Model is used to place 23 landmark points around key areas of the eyes, brows, and mouth. A prioritized binary decision tree then detects, based on the actions of these key points, if one of the seven emotional states occurs as frames pass. The completed system runs accurately and achieves a real-time frame rate of approximately 36 frames per second. A novel facial feature localization technique utilizing a nested cascade classifier tree is proposed. A coarse-to-fine search is performed in which the regions of interest are defined by the response of Haar-like features comprising the cascade classifiers. The individual responses of the Haar-like features are also used to activate finer-level searches. A specially cropped training set derived from the Cohn-Kanade AU-Coded database is also developed and tested. Extensions of this research include further testing to verify the novel facial feature localization technique presented for a full 26-point face model, and implementation of a real-time intensity sensitive automated Facial Action Coding System

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Occlusion Coherence: Detecting and Localizing Occluded Faces

    Full text link
    The presence of occluders significantly impacts object recognition accuracy. However, occlusion is typically treated as an unstructured source of noise and explicit models for occluders have lagged behind those for object appearance and shape. In this paper we describe a hierarchical deformable part model for face detection and landmark localization that explicitly models part occlusion. The proposed model structure makes it possible to augment positive training data with large numbers of synthetically occluded instances. This allows us to easily incorporate the statistics of occlusion patterns in a discriminatively trained model. We test the model on several benchmarks for landmark localization and detection including challenging new data sets featuring significant occlusion. We find that the addition of an explicit occlusion model yields a detection system that outperforms existing approaches for occluded instances while maintaining competitive accuracy in detection and landmark localization for unoccluded instances
    • …
    corecore