192 research outputs found

    Fast and Accurate Multiclass Inference for MI-BCIs Using Large Multiscale Temporal and Spectral Features

    Full text link
    Accurate, fast, and reliable multiclass classification of electroencephalography (EEG) signals is a challenging task towards the development of motor imagery brain-computer interface (MI-BCI) systems. We propose enhancements to different feature extractors, along with a support vector machine (SVM) classifier, to simultaneously improve classification accuracy and execution time during training and testing. We focus on the well-known common spatial pattern (CSP) and Riemannian covariance methods, and significantly extend these two feature extractors to multiscale temporal and spectral cases. The multiscale CSP features achieve 73.70±\pm15.90% (mean±\pm standard deviation across 9 subjects) classification accuracy that surpasses the state-of-the-art method [1], 70.6±\pm14.70%, on the 4-class BCI competition IV-2a dataset. The Riemannian covariance features outperform the CSP by achieving 74.27±\pm15.5% accuracy and executing 9x faster in training and 4x faster in testing. Using more temporal windows for Riemannian features results in 75.47±\pm12.8% accuracy with 1.6x faster testing than CSP.Comment: Published as a conference paper at the IEEE European Signal Processing Conference (EUSIPCO), 201

    A Computationally Efficient Multiclass Time-Frequency Common Spatial Pattern Analysis on EEG Motor Imagery

    Full text link
    Common spatial pattern (CSP) is a popular feature extraction method for electroencephalogram (EEG) motor imagery (MI). This study modifies the conventional CSP algorithm to improve the multi-class MI classification accuracy and ensure the computation process is efficient. The EEG MI data is gathered from the Brain-Computer Interface (BCI) Competition IV. At first, a bandpass filter and a time-frequency analysis are performed for each experiment trial. Then, the optimal EEG signals for every experiment trials are selected based on the signal energy for CSP feature extraction. In the end, the extracted features are classified by three classifiers, linear discriminant analysis (LDA), na\"ive Bayes (NVB), and support vector machine (SVM), in parallel for classification accuracy comparison. The experiment results show the proposed algorithm average computation time is 37.22% less than the FBCSP (1st winner in the BCI Competition IV) and 4.98% longer than the conventional CSP method. For the classification rate, the proposed algorithm kappa value achieved 2nd highest compared with the top 3 winners in BCI Competition IV.Comment: Accepted by 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society, 202

    An Approach of One-vs-Rest Filter Bank Common Spatial Pattern and Spiking Neural Networks for Multiple Motor Imagery Decoding

    Get PDF
    Motor imagery (MI) is a typical BCI paradigm and has been widely applied into many aspects (e.g. brain-driven wheelchair and motor function rehabilitation training). Although significant achievements have been achieved, multiple motor imagery decoding is still unsatisfactory. To deal with this challenging issue, firstly, a segment of electroencephalogram was extracted and preprocessed. Secondly, we applied a filter bank common spatial pattern (FBCSP) with one-vs-rest (OVR) strategy to extract the spatio-temporal-frequency features of multiple MI. Thirdly, the F-score was employed to optimise and select these features. Finally, the optimized features were fed to the spiking neural networks (SNN) for classification. Evaluation was conducted on two public multiple MI datasets (Dataset IIIa of the BCI competition III and Dataset IIa of the BCI competition IV). Experimental results showed that the average accuracy of the proposed framework reached up to 90.09% (kappa: 0.868) and 81.33% (kappa: 0.751) on the two public datasets, respectively. The achieved performance (accuracy and kappa) was comparable to the best one of the compared methods. This study demonstrated that the proposed method can be used as an alternative approach for multiple MI decoding and it provided a potential solution for online multiple MI detection

    Diverse Feature Blend Based on Filter-Bank Common Spatial Pattern and Brain Functional Connectivity for Multiple Motor Imagery Detection

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) is a research hotspot and has attracted lots of attention. Within this research topic, multiple MI classification is a challenge due to the difficulties caused by time-varying spatial features across different individuals. To deal with this challenge, we tried to fuse brain functional connectivity (BFC) and one-versus-the-rest filter-bank common spatial pattern (OVR-FBCSP) to improve the robustness of classification. The BFC features were extracted by phase locking value (PLV), representing the brain inter-regional interactions relevant to the MI, whilst the OVR-FBCSP is used to extract the spatial-frequency features related to the MI. These diverse features were then fed into a multi-kernel relevance vector machine (MK-RVM). The dataset with three motor imagery tasks (left hand MI, right hand MI, and feet MI) was used to assess the proposed method. Experimental results not only showed that the cascade structure of diverse feature fusion and MK-RVM achieved satisfactory classification performance (average accuracy: 83.81%, average kappa: 0.76), but also demonstrated that BFC plays a supplementary role in the MI classification. Moreover, the proposed method has a potential to be integrated into multiple MI online detection owing to the advantage of strong time-efficiency of RVM

    Enhancing Motor Imagery Decoding in Brain Computer Interfaces using Riemann Tangent Space Mapping and Cross Frequency Coupling

    Full text link
    Objective: Motor Imagery (MI) serves as a crucial experimental paradigm within the realm of Brain Computer Interfaces (BCIs), aiming to decoding motor intentions from electroencephalogram (EEG) signals. Method: Drawing inspiration from Riemannian geometry and Cross-Frequency Coupling (CFC), this paper introduces a novel approach termed Riemann Tangent Space Mapping using Dichotomous Filter Bank with Convolutional Neural Network (DFBRTS) to enhance the representation quality and decoding capability pertaining to MI features. DFBRTS first initiates the process by meticulously filtering EEG signals through a Dichotomous Filter Bank, structured in the fashion of a complete binary tree. Subsequently, it employs Riemann Tangent Space Mapping to extract salient EEG signal features within each sub-band. Finally, a lightweight convolutional neural network is employed for further feature extraction and classification, operating under the joint supervision of cross-entropy and center loss. To validate the efficacy, extensive experiments were conducted using DFBRTS on two well-established benchmark datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset and the OpenBMI dataset. The performance of DFBRTS was benchmarked against several state-of-the-art MI decoding methods, alongside other Riemannian geometry-based MI decoding approaches. Results: DFBRTS significantly outperforms other MI decoding algorithms on both datasets, achieving a remarkable classification accuracy of 78.16% for four-class and 71.58% for two-class hold-out classification, as compared to the existing benchmarks.Comment: 22 pages, 7 figure

    Electroencephalograph (EEG) signal processing techniques for motor imagery Brain Computer interface systems

    Get PDF
    Brain-Computer Interface (BCI) system provides a channel for the brain to control external devices using electrical activities of the brain without using the peripheral nervous system. These BCI systems are being used in various medical applications, for example controlling a wheelchair and neuroprosthesis devices for the disabled, thereby assisting them in activities of daily living. People suffering from Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis and completely locked in are unable to perform any body movements because of the damage of the peripheral nervous system, but their cognitive function is still intact. BCIs operate external devices by acquiring brain signals and converting them to control commands to operate external devices. Motor-imagery (MI) based BCI systems, in particular, are based on the sensory-motor rhythms which are generated by the imagination of body limbs. These signals can be decoded as control commands in BCI application. Electroencephalogram (EEG) is commonly used for BCI applications because it is non-invasive. The main challenges of decoding the EEG signal are because it is non-stationary and has a low spatial resolution. The common spatial pattern algorithm is considered to be the most effective technique for discrimination of spatial filter but is easily affected by the presence of outliers. Therefore, a robust algorithm is required for extraction of discriminative features from the motor imagery EEG signals. This thesis mainly aims in developing robust spatial filtering criteria which are effective for classification of MI movements. We have proposed two approaches for the robust classification of MI movements. The first approach is for the classification of multiclass MI movements based on the thinICA (Independent Component Analysis) and mCSP (multiclass Common Spatial Pattern Filter) method. The observed results indicate that these approaches can be a step towards the development of robust feature extraction for MI-based BCI system. The main contribution of the thesis is the second criterion, which is based on Alpha- Beta logarithmic-determinant divergence for the classification of two class MI movements. A detailed study has been done by obtaining a link between the AB log det divergence and CSP criterion. We propose a scaling parameter to enable a similar way for selecting the respective filters like the CSP algorithm. Additionally, the optimization of the gradient of AB log-det divergence for this application was also performed. The Sub-ABLD (Subspace Alpha-Beta Log-Det divergence) algorithm is proposed for the discrimination of two class MI movements. The robustness of this algorithm is tested with both the simulated and real data from BCI competition dataset. Finally, the resulting performances of the proposed algorithms have been favorably compared with other existing algorithms

    Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison

    Get PDF
    Brain computer interfaces (BCIs) have been attracting a great interest in recent years. The common spatial patterns (CSP) technique is a well-established approach to the spatial filtering of the electroencephalogram (EEG) data in BCI applications. Even though CSP was originally proposed from a heuristic viewpoint, it can be also built on very strong foundations using information theory. This paper reviews the relationship between CSP and several information-theoretic approaches, including the Kullback–Leibler divergence, the Beta divergence and the Alpha-Beta log-det (AB-LD)divergence. We also revise other approaches based on the idea of selecting those features that are maximally informative about the class labels. The performance of all the methods will be also compared via experiments.Gobierno Español MICINN TEC2014-53103-

    An Optimized SWCSP Technique for Feature Extraction in EEG-based BCI System

    Get PDF
    Brain-computer interface (BCI) is an evolving technology having huge potential for rehabilitation of patients suffering from disorders of the nervous system, besides  many other nonmedical applications. Multichannel electroencephalography (EEG) is widely used to provide input signals to a BCI system. Significant research in methodology employed to implement different stages of BCI system, has led to discovery of new issues and challenges. The raw EEG data includes artifacts from environmental and physiological sources, which is eliminated in preprocessing phase of BCI system. It is then followed by a feature extraction stage to isolate a few relevant features for further classification to a particular motor imagery (MI) activity. A feature extraction approach based on spectrally weighted common spatial pattern (SWCSP) is proposed in this paper to improve overall accuracy of a BCI system. The reported literature uses SWCSP for feature extraction, as it has outperformed other techniques. The proposed approach enhances its performance by optimizing its parameters. The independent component analysis (ICA) method is used for detection and removal of irrelevant data, while linear discriminant analysis (LDA) is used as a classifier. The proposed approach is executed on benchmark data-set 2a of BCI competition IV. It yielded classification accuracy of 70.6% across nine subjects, which is higher than all the reported approaches.&nbsp
    corecore